River-groundwater hot spot for arsenic

April 07, 2020

Naturally occurring (geogenic) groundwater arsenic contamination is a problem of global significance, with noteworthy occurrences in large parts of the alluvial and deltaic aquifers in South and Southeast Asia. To address this problem tremendous research efforts have been dedicated over the last two decades to better understand the sources and distribution of arsenic-polluted groundwater. Now, an Australian team of scientists from Flinders University, CSIRO and the University of Western Australia, together with their colleagues at the Swiss Federal Institute of Aquatic Science and Technology (Eawag), have used computer modelling to integrate much of what has been learned over the years into computer simulations that mimic the complex interactions between groundwater flow, solute transport and geochemical reaction mechanisms. Such models are important to analyse field observations, to unravel which chemical and physical processes play a role, and to predict the behaviour of arsenic within aquifers - where and when pollution may occur in the future. The results of their study have now been published in the latest issue of Nature Geoscience.

Reconstructing the past to predict future arsenic behaviour

The research team selected a highly arsenic polluted site near Hanoi (Vietnam) to develop and test their computer model. In a first step they used the tiny concentrations of tritium that had entered the groundwater system from the atmosphere during the times of nuclear bomb testing, and its decay product helium, a noble gas, to reconstruct how fast and where the groundwater was moving over the last 5 decades. Once the model simulations were able to match the concentrations that were measured, additional complexity was added to the model in order to simulate how arsenic was mobilised and transported in the Holocene aquifer.

The river-groundwater interface acts as reaction hotspot

At the study site, changes in groundwater flow occurred over the past 50 years since the city of Hanoi markedly increased the extraction of groundwater to satisfy its steadily increasing water demand; this showed to be the main trigger for arsenic pollution in the aquifer. The computer modelling allowed the researchers to pinpoint the source of arsenic down to the river muds that are regularly deposited at the more slow-flowing zones of the Red River. The organic matter contained in those muds fuelled a biogeochemical reaction that led to the release of arsenic and its km-long transport into the aquifer underlying the Van Phuc village, a process that continues to this day. Employing their developed computer model in predictive mode the researchers were able to illustrate the interplay of four key factors on the evolution and longevity of arsenic release at surface water/groundwater interfaces, (i) the abundance of reactive organic matter; (ii) the abundance of iron oxides; (iii) the magnitude of groundwater flow; and (iv) river mud deposition rate.

Original publication: Ilka Wallis, Henning Prommer, Michael Berg, Adam Siade, Jing Sun, and Rolf Kipfer (2020). The river-groundwater interface as a hotspot for arsenic release. Nature Geoscience. https://doi.org/10.1038/s41561-020-0557-6

Further information: Dr Ilka Wallis, College of Science and Engineering, Flinders University, Adelaide, South Australia; ilka.wallis@flinders.edu.au

Flinders University

Related Arsenic Articles from Brightsurf:

New map reveals global scope of groundwater arsenic risk
Up to 220 million people worldwide, with approximately 94% of them in Asia, could be at risk of drinking well water containing harmful levels of arsenic, a tasteless, odorless and naturally occurring poison.

River-groundwater hot spot for arsenic
Naturally occurring groundwater arsenic contamination is a problem of global significance, particularly in South and Southeast Asian aquifers.

Natural organic matter influences arsenic release into groundwater
Millions of people worldwide consume water contaminated with levels of arsenic that exceed those recommended by the World Health Organization.

New study finds inaccuracies in arsenic test kits in Bangladesh
Researchers at the University of Michigan have raised serious concerns with the performance of some arsenic test kits commonly used in Bangladesh to monitor water contamination.

Bayreuth researchers discover new arsenic compounds in rice fields
University of Bayreuth researchers, together with scientists from Italy and China, have for the first time sys-tematically investigated under which conditions, and to what extent, sulphur-containing arsenic com-pounds are formed in rice-growing soils.

Kids rice snacks in Australia contain arsenic above EU guidelines: Study
Three out of four rice-based products tested have concentrations of arsenic that exceed the EU guideline for safe rice consumption for babies and toddlers.

Arsenic in drinking water may change heart structure
Among young adults, drinking water contaminated with arsenic may lead to structural changes in the heart that raise their risk of heart disease.

Arsenic-breathing life discovered in the tropical Pacific Ocean
In low-oxygen parts of the ocean, some microbes are surviving by getting energy from arsenic.

Parboiling method reduces inorganic arsenic in rice
Contamination of rice with arsenic is a major problem in some regions of the world with high rice consumption.

UN University compares technologies that remove arsenic from groundwater
A UN University study compares for the first time the effectiveness and costs of many different technologies designed to remove arsenic from groundwater -- a health threat to at least 140 million people in 50 countries.

Read More: Arsenic News and Arsenic Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.