We may be looking at wrong mutation for breast cancer treatment

April 08, 2015

A leading gene candidate that has been the target of breast cancer drug development may not be as promising as initially thought, according to research published in open access journal Genome Medicine.

Mutation in the gene PIK3CA is the second most prevalent gene mutation in breast cancer and is found in 20% of all breast cancers. This has led people to think these changes may be driving breast cancer. Yet these mutations are also known to be present in neoplastic lesions -pre-cancerous growths many of which are thought to be benign, that have not invaded the surrounding tissue.

Researchers from Stanford University wanted to better understand these neoplastic growths and how they related to the carcinoma. They sequenced the genes from tissue taken from the breasts of six women who had undergone a mastectomy, leading to a total of 66 samples, which included 18 carcinomas and 34 neoplastic lesions.

A specific mutation in the PIK3CA gene occurs in the same patient multiple times. This was found to be the case for four out of the six women. In two out of these four cases, this mutation occurs in the neoplastic lesions, which are not considered tumors, but does not occur in the invasive carcinoma.

One of the lead researchers, Arend Sidow, said: "There are currently several drugs in development that target PIK3CA, attesting to the fact that many companies and clinicians believe PIK3CA to be a promising target. Our finding that PIK3CA may recur multiple times at various stages of tumor or neoplastic development suggests that it is more of a moving target than one would like."

The researchers constructed phylogenetic trees to track the mutations back to their original cell to determine how the lesions were related to each other. From this, the researchers discovered that in each of the four PIK3CA-positive patients the mutation arose independently multiple times. This is something that has never been seen before. Following the PIK3CA mutation through these phylogenetic trees, and its lack of presence in the final carcinoma in two cases, would suggest that it is not driving the cancer, and instead suggests that it is a driver of benign proliferation.

This new information will have implications for the development of future drugs that target PIK3CA. Future studies should attempt to replicate this one with more patients and attempt to show whether PIK3CA mutations are ancestrally present in the tumor cells of positive patients, in which case it may be good target, or whether it is present in only a subset of tumor cells, in which case it is not a good target.
-end-
Media Contact

Shane Canning
Media Manager
BioMed Central
T: +44 (0)20 3192 2243
M: +44 (0)78 2598 4543
E: shane.canning@biomedcentral.com

Notes to editor:

1. Research article

Cell-lineage heterogeneity and driver mutation recurrence in pre-invasive breast neoplasia

Ziming Weng, Noah Spies, Shirley X Zhu, Daniel E Newburger, Dorna Kashef-Haghighi, Serafim Batzoglou, Arend Sidow and Robert B West

Genome Medicine

doi:10.1186/s13073-015-0146-2

For a copy of the article during the embargo period please contact Shane Canning

After embargo article available at journal website here: http://dx.doi.org/10.1186/s13073-015-0146-2

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

2. Genome Medicine publishes peer-reviewed research articles, new methods, software tools, reviews and comment articles in all areas of medicine studied from a post-genomic perspective. Areas covered include, but are not limited to, disease genomics (including genome-wide association studies and sequencing-based studies), disease epigenomics, pathogen and microbiome genomics, immunogenomics, translational genomics, pharmacogenomics and personalized medicine, proteomics and metabolomics in medicine, systems medicine, and ethical, legal and social issues. http://genomemedicine.com/

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. http://www.biomedcentral.com

BioMed Central

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.