Scientists predict gradual, prolonged permafrost greenhouse gas emissions

April 08, 2015

A new scientific synthesis suggests a gradual, prolonged release of greenhouse gases from permafrost soils in Arctic and sub-Arctic regions, which may afford society more time to adapt to environmental changes, say scientists in an April 9 paper published in Nature.

"Twenty years ago there was very little research about the possible rate of permafrost carbon release," said co-author A. David McGuire, U.S. Geological Survey senior scientist and climate modeling expert with the Institute of Arctic Biology at the University of Alaska Fairbanks. "In 2011, we assembled an international team of scientists into the Permafrost Carbon Network to synthesize existing research and answer the questions of how much permafrost carbon is out there, how vulnerable to decomposition it is once it's thawed, and what are the forms in which it's released into the atmosphere."

Permafrost soils contain twice as much carbon as there is currently in the atmosphere. As the climate warms and permafrost thaws, microbial breakdown of organic carbon increases and can accelerate the release of carbon dioxide and methane into the atmosphere creating even more warming. In high-latitude regions of the Earth, temperatures have risen 0.6 C per decade during the last thirty years - twice as fast as the global average.

Permafrost has warmed nearly 11 degrees F in the past 30 years, according to co-author Vladimir Romanovsky, a permafrost expert with the UAF Geophysical Institute. In the 1980s, the temperature of permafrost in Alaska, Russia and other Arctic regions averaged to be almost 18 F. Now the average is just over 28 F.

Two decades ago, scientists thought that as permafrost thawed, carbon would be released in a big "bomb" and significantly accelerate climate warming.

"The data from our team's syntheses don't support the permafrost carbon bomb view," said McGuire. "What our syntheses do show is that permafrost carbon is likely to be released in a gradual and prolonged manner, and that the rate of release through 2100 is likely to be of the same order as the current rate of tropical deforestation in terms of its effects on the carbon cycle."

Most climate modelers want to incorporate the permafrost carbon feedback into their models, say these scientists, but whether they do or don't is a matter of their priorities given the multitude of issues that such models must consider. McGuire, Romanovsky and their co-authors consider the synthesis very important information for climate models in setting their priorities.

"If society's goal is to try to keep the rise in global temperatures under two degrees C and we haven't taken permafrost carbon release into account in terms of mitigation efforts, then we might underestimate that amount of mitigation effort required to reach that goal," McGuire said.

Scientists in the Permafrost Carbon Network plan to continue to help the modeling community make refinement to improve representation of permafrost carbon and its fate in a warming world. They recommend improved observation networks, including remote sensing capabilities to quantify real-time carbon dioxide and methane emissions from permafrost regions.
-end-
A. David McGuire, U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Unit senior scientist; University of Alaska Fairbanks, Institute of Arctic Biology, professor of ecology, admcguire@alaska.edu, 907-474-6242

Vladimir Romanovsky, University of Alaska Fairbanks, Geophysical Institute, professor of geophysics, veromanovsky@alaska.edu.

Marie Thoms, University of Alaska Fairbanks, Institute of Arctic Biology, communications and web manager, methoms@alaska.edu, office: 907-474-7412, mobile: 907-460-1841, @ArcticBiology, iab.uaf.edu

Diana Campbell, University of Alaska Fairbanks, Geophysical Institute, public relations assistant, dlcampbell@alaska.edu, office: 907-474-5229.

University of Alaska Fairbanks

Related Greenhouse Gases Articles from Brightsurf:

Mitigation of greenhouse gases in dairy cattle through genetic selection
Researchers in Spain propose mitigating methane production by dairy cattle through breeding.

Researchers control cattle microbiomes to reduce methane and greenhouse gases
''Now that we know we can influence the microbiome development, we can use this knowledge to modulate microbiome composition to lower the environmental impact of methane from cows by guiding them to our desired outcomes,'' Ben-Gurion University of the Negev Prof Mizrahi says.

A new look into the sources and impacts of greenhouse gases in China
Special issue of Advances in Atmospheric Sciences reveals new findings on China's GHG emissions and documents changes in local and regional environments.

New catalyst recycles greenhouse gases into fuel and hydrogen gas
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals.

Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.

Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.

White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.

Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.

What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.

Greenhouse gases were the main driver of climate change in the deep past
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.

Read More: Greenhouse Gases News and Greenhouse Gases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.