Research shows alternating antibiotics could make resistant bacteria beatable

April 08, 2015

Pioneering new research has unlocked a new technique to help combat the rise of antibiotic-resistant bacteria, that cause debilitating and often life-threatening human illness.

Researchers from the University of Exeter has shown that the use of 'sequential treatments' - using alternating doses of antibiotics - might offer effective treatment against bacterial infection.

Crucially, the research also demonstrates this technique for administering treatment also reduces the risk of the bacteria becoming resistant to antibiotics, and so maintaining the long-term effectiveness of the drugs.

The collaborative international research, led by Professor Robert Beardmore from the University of Exeter and funded by EPSRC, is published in leading scientific journal PLOS Biology on Wednesday 8 April.

The research indicates that drug treatments with two antibiotics can be designed to kill bacteria at dosages that would ordinarily cause rapid development of drug resistance and sustained bacterial growth, when administered alone or in combination.

The researchers used a test-tube model of a bacterial infection to show that, even in bacteria that already harbour drug resistance genes, sequential treatments could deal with the bacteria, even when much higher doses of single drugs or mixtures of two drugs failed to do so.

"Our study finds a complex relationship between dose, bacterial population densities and drug resistance," said lead author, Professor Beardmore. "As we demonstrate, it is possible to reduce bacterial load to zero at dosages that are usually said to be sub lethal and, therefore, are assumed to select for increased drug resistance."

The researchers also discovered that, although sequential treatments didn't suppress the rise of all drug resistance mutations in the bacteria, one drug would 'sensitize' the bacteria to the second drug, and therefore reduce the risk of resistance occurring.

Study co-author Dr Ayari Fuentes-Hernandez said: "Research has concentrated for decades on synergistic drug cocktails. We believe 'sequential synergies' might be just as potent if we look for them, this research will therefore be of interest to the pharma and dwindling antibiotic discovery communities."

While bacteria are masters at adapting to antibiotic challenge, this research suggests that there is a way to use this adaptation against them. The fluctuating environments created by well-designed sequential treatments can sensitize bacteria and render them susceptible to concentrations of antibiotics that would normally induce drug resistance and continued existence.

EPSRC-funded researcher, Dr Jessica Plucain, said that although extensive further work is now needed to will be needed before sequential treatments make it in to the clinic, the research demonstrates that they can be effective even when using drug doses below their maximal potency.

She said: "One outcome of this highly surprising result will be to set in motion a series of studies to determine ways of using antibiotics not only in combination, but sequentially and with the potential for lower dosages than is currently thought possible."
-end-


University of Exeter

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.