Breast cancer research uncovers the fountain of youth

April 08, 2015

The Fountain of Youth has been discovered and it's not in Florida as Ponce de Leon claimed. Instead, it was found in the mammary glands of genetically modified mice.

A research team led by Professor Rama Khokha has found that when two factors that control tissue development are removed, you can avoid the impact of aging.

Think of tissue as a building that is constantly under renovation. The contractors would be "metalloproteinases," which are constantly working to demolish and reconstruct the tissue. The architects in this case, who are trying to reign in and direct the contractors, are known as "tissue inhibitors of metalloproteinases" -- or TIMPs. When the architect and the contractors don't communicate well, a building can fall down. In the case of tissue, the result can be cancer.

To understand how metalloproteinases and TIMPs interact, medical researchers breed mice that have one or more of the four different types of TIMPs removed. Khokha's team examined the different combinations and found that when TIMP1 and TIMP3 were removed, breast tissue remained youthful in aged mice. The results are presented in Nature Cell Biology.

In the normal course of aging, your tissue losses its ability to develop and repair as fast as it did when you were young. That's because stem cells, which are abundant in your youth, decline with the passing of time. The U of T team found that with the TIMP1 and TIMP3 architects missing, the pool of stem cells expanded and remained functional throughout the lifetime of these mice.

"Normally you would see these pools of stem cells, which reach their peak at six months in the mice, start to decline. As a result, the mammary glands start to degenerate, which increases the risk of breast cancer occurring," explains Khokha. "However, we found that in these particular mice, the stem cells remained consistently high when we measured them at every stage of life."

The team also found that despite large number of stem cells, there was no increased risk of cancer.

"It's generally assumed that the presence of a large number of stem cells can lead to an increased cancer risk," says Khokha. "However, we found these mice had no greater predisposition to cancer."

The next step in this research is to understand why this is happening. Khokha is also working with her colleagues at Princess Margaret to see how altered tissue remodeling might prevent cancer development or lead to a new therapeutic treatment for patients.

Khokha is a Professor in the departments of Medical Biophysics and Laboratory Medicine and Pathobiology, as well as a Senior Scientist at the Princess Margaret Cancer Centre. Her work is supported by the Canadian Breast Cancer Foundation and the Canadian Cancer Society Research Institute.

She was drawn to this research by the complexity of breast tissue.

"It's a fundamental tissue that is constantly reorganizing. It develops at puberty. It goes through cycles of change in the adult female. New structures appear and regress," she explains. "It is therefore a good system to explore in order to understand tissue maintenance and epithelial cell turnover - the cells that underlie carcinomas, the most frequent type of cancer."

She worked closely with the paper's lead author, Dr. Hartland Jackson, who earned his PhD under her supervision. He is now completing a post-doctoral fellowship at the University of Zurich's Institute of Molecular Life Sciences.

"He's continuing his work in breast cancer and learning some really interesting techniques that, I hope, he'll bring back here," says Khokha, who beams with pride at her former student's success.
-end-


University of Toronto

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.