Nav: Home

Protective effect of genetically modified cord blood on spinal cord injury in rats

April 08, 2016

Transplantation of genetically modified cells carrying a transgene has a greater stimulating effect on the regeneration of post-traumatic central nervous system.

During spinal cord injury, the extensive area adjacent to the epicenter of the injury gets involved in the pathological process. As such, in order to achieve complete therapeutic action, the therapeutic gene must be delivered not only to the epicenter of traumatic injury but also to the surrounding areas distant from the epicenter of injury.

Two transgenes such as vascular endothelial growth factor (VEGF) and glial cell-derived neurotrophic factor (GDNF) proved to be powerful factors in the maintenance of viability of a number of cell different populations in the spinal cord, including the motor neurons.

VEGF stimulates neurogenesis and axonal growth as well as the rapid reproduction of astrocytes, neural stem, and Schwann cells. GDNF reduces apoptosis and tissue degeneration, supports expression of neurofilament protein, calcitonin gene-related peptide (CGRP) and growth associated protein 43.

For this study, researchers of Kazan Federal University and Kazan State Medical University chose human umbilical cord blood mononuclear cells (UCB-MCs), easy to produce and safe, with low immunogenicity and the potential to increase neuroregeneration, transduced with these two genes VEGF and GDNF.

"Considering the action of VEGF and GDNF through different receptors and pathways, we hypothesized that the simultaneous delivery of these two therapeutic genes would promote synergistic neuroprotective effects.

Thus, using a rat contusion spinal cord injury model we examined the efficacy of the construct on tissue sparing, glial scar severity, the extent of axonal regeneration, recovery of motor function, and analyzed the expression of the recombinant genes VEGF and GNDF in vitro and in vivo" comments one of the authors Yana Mukhamedshina.

The results obtained show that the adenoviral vectors encoding VEGF and GDNF, used to transduce UCB-MCs, were shown to be an effective and stable in these cells following transplantation.

The construct managed to increase tissue sparing and numbers of spared/regenerated axons, reduce glial scar formation and promote behavioral recovery when transplanted immediately after a rat contusion spinal cord injury. Researchers conclude that genetically modified human umbilical cord blood cells are a promising strategy for enhancing posttraumatic spinal cord regeneration.
-end-
The study was supported by grants 15-04-07527 (A.A. Rizvanov) and 14-04-31246 (Y.O.Mukhamedshina) from Russian Foundation for Basic Research. Y.O. Mukhamedshina was supported by a Presidential Grant for government support of young scientists (PhD) from the Russian Federation (MK-4020.2015.7). This work was performed in accordance with Program of Competitive Growth of

Kazan Federal University and a subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities. Some of the experiments were conducted using equipment at the Interdisciplinary Center for Collective Use of Kazan Federal University supported by Ministry of Education of Russia (ID RFMEFI59414X0003), Interdisciplinary Center for Analytical Microscopy, and Pharmaceutical Research and Education Center, Kazan (Volga Region) Federal University, Kazan, Russia.

Kazan Federal University

Related Spinal Cord Injury Articles:

Spinal cord injury increases risk for mental health disorders
A new study finds adults with traumatic spinal cord injury are at an increased risk of developing mental health disorders and secondary chronic diseases compared to adults without the condition.
Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.
IU scientists study link between energy levels, spinal cord injury
A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.
UBCO professor simplifies exercise advice for spinal cord injury
Professor Kathleen Martin Ginis says a major barrier to physical activity for people with a spinal cord injury is a lack of knowledge or resources about the amount and type of activity needed to achieve health and fitness benefits.
Robotic trunk support assists those with spinal cord injury
A Columbia Engineering team has invented a robotic device -- the Trunk-Support Trainer (TruST) -- that can be used to assist and train people with spinal cord injuries (SCIs) to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.
Does frailty affect outcomes after traumatic spinal cord injury?
A new study has shown that frailty is an important predictor of worse outcome after traumatic spinal cord injury in patients less than 75 years of age.
Sleep and sleepiness 'a huge problem' for people with spinal cord injury
A new study led by a University of Calgary researcher at the Cumming School of Medicine (CSM) finds that fatigue and sleep may need more attention in order to prevent issues like stroke after spinal cord injury.
From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.
Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.
Timing could mean everything after spinal cord injury
Moderate damage to the thoracic spinal cord causes widespread disruption to the timing of the body's daily activities, according to a study of male and female rats published in eNeuro.
More Spinal Cord Injury News and Spinal Cord Injury Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.