Nav: Home

From spinal cord injury to recovery

April 08, 2019

Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body. Studying the mechanisms of recovery, Leuven researcher Aya Takeoka (NERF) found that a specific type of neuronal feedback from sites below the injury plays a crucial role during early recovery and for maintaining regained motor functions. These new basic research findings implicate the importance of continued use of affected body parts for rehabilitative success in spinal cord injury patients.

"Following spinal cord injury, disrupted neuronal pathways can no longer provide sufficiently strong signals to the spinal networks below the injury, often leading to permanent and devastating motor impairment," explains prof. Aya Takeoka from NERF (NeuroElectronics Research Flanders), an interdisciplinary research center empowered by VIB, KU Leuven and imec. Her lab studies the mechanisms of motor learning and control, including how motor functions recover after injury.

"Incomplete injuries, where only part of the neuronal connections are damaged, frequently recover spontaneously," adds Takeoka. "We know that activating a very specific type of sensory feedback pathway plays a crucial role during rehabilitative training, promoting the formation of detour circuits. Understanding this process in more detail can help us design rehabilitation strategies with maximal benefit for spinal cord injury patients."

Early and maintained feedback for maximal success

One type of so-called somatosensory feedback is proprioception, which entails the unconscious perception of self-movement and body position through nerve cells that are located in close proximity of the spinal cord and can detect muscle stretch.

To learn more about where and when proprioceptive feedback affects locomotor recovery after injury, Takeoka devised a conditional genetic approach to eliminate this type of feedback at different locations and time points in mice. Using these models, she showed that proprioceptive feedback below but not above the site of injury is critical for naturally occurring circuit rearrangement and locomotor recovery.

"We found a central role for so-called proprioceptive afferents, nerve fibers which signal proprioceptive information back to the spinal cord," says Takeoka. "Afferents below the lesion undergo specific rearrangements soon after injury, and without them regained motor function cannot be maintained, even if detour circuits have formed."

In short, proprioceptive feedback is not only essential to initiate locomotor recovery but it is also permanently required to maintain any regained motor function. According to Takeoka, these findings can inform rehabilitation practices for patients as well: "The fact that proprioceptive feedback, specifically from below the site of injury, is so important, suggests that task-specific rehabilitative training that emphasizes such feedback is likely to maximize functional outcomes in rehabilitation clinics."
-end-
Publication

Functional local proprioceptive feedback circuits initiate and maintain locomotor recovery after spinal cord injury, Takeoka & Arber, Cell Reports 2019

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: patienteninfo@vib.be. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

VIB (the Flanders Institute for Biotechnology)

Related Spinal Cord Injury Articles:

New strategies for managing bowel and bladder dysfunction after spinal cord injury
Two complications have emerged as top priorities for spinal cord injury researchers -- neurogenic bowel and neurogenic bladder.
IU scientists study link between energy levels, spinal cord injury
A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.
UBCO professor simplifies exercise advice for spinal cord injury
Professor Kathleen Martin Ginis says a major barrier to physical activity for people with a spinal cord injury is a lack of knowledge or resources about the amount and type of activity needed to achieve health and fitness benefits.
New injection technique may boost spinal cord injury repair efforts
Researchers at UC San Diego School of Medicine, with colleagues, describe a new method for delivering neural precursor cells to spinal cord injuries in rats, reducing the risk of further injury and boosting the propagation of potentially reparative cells.
Robotic trunk support assists those with spinal cord injury
A Columbia Engineering team has invented a robotic device -- the Trunk-Support Trainer (TruST) -- that can be used to assist and train people with spinal cord injuries (SCIs) to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.
Does frailty affect outcomes after traumatic spinal cord injury?
A new study has shown that frailty is an important predictor of worse outcome after traumatic spinal cord injury in patients less than 75 years of age.
Sleep and sleepiness 'a huge problem' for people with spinal cord injury
A new study led by a University of Calgary researcher at the Cumming School of Medicine (CSM) finds that fatigue and sleep may need more attention in order to prevent issues like stroke after spinal cord injury.
From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.
Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.
Timing could mean everything after spinal cord injury
Moderate damage to the thoracic spinal cord causes widespread disruption to the timing of the body's daily activities, according to a study of male and female rats published in eNeuro.
More Spinal Cord Injury News and Spinal Cord Injury Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.