Amorphous materials will be used in medical and industrial applications

April 08, 2019

Amorphous solids have an internal structure made of interconnected structural blocks. These blocks can be similar to the basic structural units found in the corresponding crystalline phase of the same compound. Almost all known systems, including water or metallic alloys, can become amorphous under certain conditions. In particular, such alloys can show outstanding physical and mechanical properties, such as strength, electric conductivity, and corrosion resistance.

"Combining quantum mechanics and statistical physics with machine learning and Big Data can help find new solutions in physics and materials science," says project head Anatolii Mokshin. "We can now find out many physical properties of a compound just by knowing its chemical composition. We can calculate properties under extremely high temperature or pressure not yet obtainable through actual experiment. This is a part of our approach in this project."

In this particular paper, Dr. Mokshin's group studied the influence of supercooling on the structure and morphology of the crystalline nuclei arising and growing within a liquid metallic film. It was found that the liquid metallic film at the temperatures corresponded to low supercooling levels crystallizes into a monocrystal, whereas a polycrystalline structure forms at deep supercooling levels. The temperature dependence of critical size of the crystalline nuclei contains two distinguishable regimes with the crossover temperature, which appears due to the specific geometry of the system.
-end-


Kazan Federal University

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.