Nav: Home

Just how much does enhancing photosynthesis improve crop yield?

April 08, 2019

In the next two decades, crop yields need to increase dramatically to feed the growing global population. Wouldn't it be incredibly useful if we had a crystal ball to show us what are the best strategies available to increase crop yields?

A team of scientists have just developed exactly that: a dynamic model that predicts which photosynthetic manipulations to plants will boost the yields of wheat and sorghum crops.

"We have developed a reliable, biologically rigorous prediction tool that can quantify the yield gains associated with manipulating photosynthesis in realistic crop environments," said Dr Alex Wu, from the ARC Centre of Excellence for Translational Photosynthesis (CoETP) and The University of Queensland (UQ).

Plants convert sunlight, carbon dioxide and water into food through photosynthesis and several studies have shown that this vital process can be engineered to be more efficient.

"Until now, it has been difficult to assess the impacts of these manipulations on crop yield. This prediction tool will help us to find new ways to improve the yields of food crops around the world."

Dr Wu, the lead author of the paper published this week in the journal Nature Plants, said that this modelling tool has the capacity to link across biological scales from biochemistry in the leaf to the whole field crop over a growing season, by integrating photosynthesis and crop models.

"It is a powerful tool to assess and guide photosynthetic manipulations and unravel effects that confound the relationship between photosynthetic efficiency and crop performance, "he said.

Centre Deputy Director Professor Susanne von Caemmerer said one of the study's most innovative aspects was using a cross-scale modelling approach to look at the interactions between photosynthesis and the pores of the leaf that allow the exchange of CO2 and water vapour.

"We know that it is not as simple as saying that improving photosynthesis will increase yield. The answer depends on the situation," said Professor von Caemmerer, a researcher at The Australian National University (ANU) who is a co-author of the study.

"For example, we found that in crops like sorghum, more photosynthesis can actually decrease yield in water-limited cropping situations. The modelling predicts that we can manage this yield penalty if we can also maintain a stable rate of carbon dioxide entering, or water vapour exiting, the pores of a leaf."

Co-author and Centre Chief Investigator Professor Graeme Hammer from UQ said this study fosters the type of transdisciplinary research needed for future crop improvement.

"It links research across the whole Centre, which has a main focus to increase the yield of major staple crops such as wheat, rice, sorghum and maize by enhancing photosynthesis."

"Now that we have developed and tested this predictive model, our next step is to work closely with collaborators at the CoETP to design simulation scenarios that test the effects of other bioengineering and breeding trait targets," Professor Hammer said.

One of those collaborators is ANU Professor Graham Farquhar, who co-authored the study.

"In this study we are scaling up to the whole crop growth season and incorporating the feedback effects on photosynthesis of resources for the crop, such as water, which is critical in predicting consequences on crop productivity in future Australian crop environments", said Centre Chief Investigator Professor Farquhar from the ANU Research School of Biology.

The team investigated three main photosynthesis manipulation targets - enhancing the activity of the main photosynthetic enzyme, Rubisco; improving the capacity of the leaves to transport electrons; and improving the flow of carbon dioxide (CO2) through the internal layers of the leaf.

"This study permits us to quantify the consequences on crop yield for these three targets and their combinations for wheat and sorghum crops for irrigated or dryland cropping environments," said Dr Wu.

The team found crop yield changes ranged from a reduction of one per cent to a 12 per cent increase, depending on the combination of photosynthetic targets, the crop and environmental conditions such as water availability.
-end-
This research is published in Nature Plants and was funded by the Australian Research Council (ARC) Centre of Excellence for Translational Photosynthesis at the Australian National University and The University of Queensland.

University of Queensland

Related Photosynthesis Articles:

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.
Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.
Tethered chem combos could revolutionize artificial photosynthesis
Scientists at Brookhaven National Laboratory have doubled the efficiency of a chemical combo that captures light and splits water molecules so the building blocks can be used to produce hydrogen fuel.
Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.
Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.
Just how much does enhancing photosynthesis improve crop yield?
In the next two decades, crop yields need to increase dramatically to feed the growing global population.
Algal library lends insights into genes for photosynthesis
To identify genes involved in photosynthesis, researchers built a library containing thousands of single-celled algae, each with a different gene mutation.
New molecular blueprint advances our understanding of photosynthesis
Researchers at Lawrence Berkeley National Laboratory have used one of the most advanced microscopes in the world to reveal the structure of a large protein complex crucial to photosynthesis, the process by which plants convert sunlight into cellular energy.
Structure and function of photosynthesis protein explained in detail
An international team of researchers has solved the structure and elucidated the function of photosynthetic complex I.
Photosynthesis like a moss
Moss evolved after algae but before vascular land plants, such as ferns and trees, making them an interesting target for scientists studying photosynthesis, the process by which plants convert sunlight to fuel.
More Photosynthesis News and Photosynthesis Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab