International team decodes the durum wheat genome

April 08, 2019

An international consortium has sequenced the entire genome of durum wheat--the source of semolina for pasta, a food staple for the world's population, according to an article published today in Nature Genetics.

The team has also discovered how to significantly reduce cadmium levels in durum grain, ensuring the safety and nutritional value of the grain through selective breeding.

"This ground-breaking work will lead to new standards for durum breeding and safety of durum-derived products, paving the way for production of durum wheat varieties better adapted to climate challenges, with higher yields, enhanced nutritional quality, and improved sustainability," said Luigi Cattivelli of Italy's Council for Agricultural Research and Economics (CREA).

The durum wheat genome is four times as large as the human genome. The team has for the first time assembled the complete genome of the high-quality Svevo variety.

"We can now examine the genes, their order and structure to assemble a blueprint that provides an opportunity to understand how the genes work and communicate with one another," said wheat breeder Curtis Pozniak of the University of Saskatchewan (USask). "With this blueprint, we can now work quickly to identify genes that are responsible for the traits we select for in our breeding programs such as yield, disease resistance, and nutritional properties."

The research involved more than 60 scientists from seven countries. The work was co-ordinated by Cattivelli and included corresponding authors Pozniak of USask and Klaus Mayer of the Helmholtz Zentrum in München (Germany), as well as researchers Aldo Ceriotti and Luciano Milanesi of Italy's national research council CNR and Roberto Tuberosa of the University of Bologna (Italy).

"We can now see the distinct DNA signatures that have been so critical to the evolution and breeding of durum wheat, enabling us to understand which combination of genes is driving a particular signature and to maintain those target areas of the genome for future breeding improvement," said Marco Maccaferri, lead author of the manuscript.

Durum wheat, mainly used as the raw material for pasta and couscous production, evolved from wild emmer wheat and was established as a prominent crop roughly 1,500 to 2,000 years ago in the Mediterranean area.

The team compared the durum wheat sequence to its wild relative and were able to reveal genes that humans have been selecting over the centuries. The scientists uncovered a loss of genomic diversity in durum wheat compared to its wild wheat relative, and they've been able to map these areas of loss and precisely recover beneficial genes lost during centuries of breeding.

"Unlike in humans, durum wheat is a so-called polyploid and contains two genomes. How these genomes interact and coordinate their activities is a fundamental question that might also have impact on food quality and yield," said Mayer.

In an exciting genetic discovery, Pozniak's USask team, along with University of Alberta scientists Gregory Taylor and Neil Harris, identified the gene in durum wheat responsible for accumulation of cadmium, a toxic heavy metal found in many soils.

"Now that we've identified this gene, we can effectively select varieties that do not accumulate significant cadmium in the grain--levels well below World Health Organization standards which will ensure that our durum wheat products are more nutritionally safe," said Pozniak.

Durum wheat is mainly cultivated in Canada, Europe, United States, and South Asia, and remains a key crop for small farms in North and East Africa, as well as the Middle East.

As pasta is a staple for the world's population, industries are asking for more, safer, and higher-quality durum wheat.

"Having this durum wheat high-quality genome sequence enables us to better understand the genetics of gluten proteins and the factors that control the nutritional properties of semolina. This will help to improve pasta quality traits," said Ceriotti.

"The selection of new durum cultivars with greater yield potential, as well as enhanced quality and nutritional properties, is critical for our future well-being, particularly in the face of climate change. The availability of the durum genome sequence is an essential tool to achieve these targets and provides a strategic bridge between the biodiversity of wild progenitors and bread wheat," said Tuberosa.

Funding was provided by: CREA; the Italian Ministry of Education University and Research Projects InterOmics and PON-ISCOCEM; Natural Sciences and Engineering Research Council of Canada; Genome Canada and Genome Prairie; Saskatchewan Ministry of Agriculture and Government of Canada through the Agriculture Development Fund; Western Grains Research Foundation; Saskatchewan Wheat Commission; Alberta Wheat Commission; Manitoba Wheat and Barley Growers Association; Fondazione AGER; University of Bologna; Binational Science Foundation; Israel Science Foundation; U.S. Department of Agriculture; German Federal Ministry of Food and Agriculture; and German Ministry of Education and Research.
-end-
The Nature Genetics article can be seen here: http://dx.doi.org/10.1038/s41588-019-0381-3

Access to the durum wheat genome is available at: http://www.interomics.eu/durum-wheat-genome and in the scientific database GrainGenes.

For more information, contact:

CREA - Council for Agricultural Research and Economics

Cristina Giannetti
stampa@crea.gov.it
+39 0647836335

University of Saskatchewan

Jennifer Thoma
Media Relations Specialist
+1 (306) 966-1851
jennifer.thoma@usask.ca

CNR National Research Council

Marco Ferrazzoli
stampa@ufficiostampa.cnr.it
+ 39 06 4993 3383

University of Bologna

Monica Lacoppola
monica.lacoppola@unibo.it
+39 051 209 8547

University of Saskatchewan

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.