Nav: Home

Earth's recovery from mass extinction could take millions of years

April 08, 2019

How long will it take our biosphere to recover from the current climate crisis? It's a question that makes for a sobering examination of Earth's ongoing destruction. And it's to the past, specifically the fossils of a tiny species that went out with the dinosaurs, that scientists have turned for the answer.

Recovering from mass extinction has a "speed limit", they reveal, with gradual patterns of ecosystem redevelopment and speciation. Just as the planet we now occupy is vastly different to the one known by dinosaurs, the future ecosystem will be even further removed due to negative anthropogenic effects.

Palaebiologists from the University of Bristol and University of Texas studied the recovery rate of planktic foraminifera dating back to the Cretaceous-Paleogene extinction. This period provides a unique analogue for our current times as it's the only major event in Earth's history that happened faster than modern climate change.

Their study shows that global recovery from this extinction, which killed the dinosaurs and left a gaping hole in the biosphere, took around ten million years as new innovations had to first appear, then finer differences or specializations could be evolved.

These findings have striking implications for the planet as we know it, as we confront an escalating climate crisis, increasing habitat destruction and the invasive nature of species introduction - a pattern of events that parallel ancient times.

Researcher and co-author of the study, which appears in Nature Ecology and Evolution, Andrew Fraass, said: "Foraminifera are useful at the species level because of their superior fossil record, so we've been able to look at this process in a closer way than anybody else.

"From this study, it's reasonable to infer that it's going to take an extremely long time - millions of years - to recovery from the extinction that we're causing through climate change and other methods."

The delay in speciation observed by Fraass and co-researcher Christopher Lowery, was due to the dynamics of morphospace expansion. This explains how species redevelop; first by refilling the broad ecological niches of a recovering biosphere, and then later filling in, or specializing in, the gaps.

Fraass and Lowery, from Bristol's School of Earth Sciences, took measurements of foraminifera to see how similar or different species were. About ten measurements of all species were done, but for this first study Fraass said they were concentrating on just the 20 or so million years around the end Cretaceous mass extinction and recovery. They found that really different species show up first, then the more similar species fill in around those first set. They find that their results match up very well with earlier, theoretical work, from two authors.

Having opened this new perspective on the world, past and future, Fraass and Lowery plan to apply their methodology to the rest of the history of the group, from late Jurassic to the present day.

"We're hoping that examining the rest of the planktic foraminiferal record will give us insight into how climate shaped their evolution. With the past, slower, changes in climate we have in the geological record, we should be able to tease out more details about how climate change might impact these important plankton."
-end-


University of Bristol

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
Climate taxes on agriculture could lead to more food insecurity than climate change itself
New IIASA-led research has found that a single climate mitigation scheme applied to all sectors, such as a global carbon tax, could have a serious impact on agriculture and result in far more widespread hunger and food insecurity than the direct impacts of climate change.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.