Cold plasma can kill 99.9% of airborne viruses, U-M study shows

April 08, 2019

ANN ARBOR--Dangerous airborne viruses are rendered harmless on-the-fly when exposed to energetic, charged fragments of air molecules, University of Michigan researchers have shown.

They hope to one day harness this capability to replace a century-old device: the surgical mask.

The U-M engineers have measured the virus-killing speed and effectiveness of nonthermal plasmas--the ionized, or charged, particles that form around electrical discharges such as sparks. A nonthermal plasma reactor was able to inactivate or remove from the airstream 99.9% of a test virus, with the vast majority due to inactivation.

Achieving these results in a fraction of a second within a stream of air holds promise for many applications where sterile air supplies are needed.

"The most difficult disease transmission route to guard against is airborne because we have relatively little to protect us when we breathe," said Herek Clack, U-M research associate professor of civil and environmental engineering.

To gauge nonthermal plasmas' effectiveness, researchers pumped a model virus--harmless to humans--into flowing air as it entered a reactor. Inside the reactor, borosilicate glass beads are packed into a cylindrical shape, or bed. The viruses in the air flow through the spaces between the beads, and that's where they are inactivated.

"In those void spaces, you're initiating sparks," Clack said. "By passing through the packed bed, pathogens in the air stream are oxidized by unstable atoms called radicals. What's left is a virus that has diminished ability to infect cells."

The experiment and its results are published in the Journal of Physics D: Applied Physics.

Notably, during these tests researchers also tracked the amount of viral genome that was present in the air. In this way, Clack and his team were able to determine that more than 99% of the air sterilizing effect was due to inactivating the virus that was present, with the remainder of the effect due to filtering the virus from the air stream.

"The results tell us that nonthermal plasma treatment is very effective at inactivating airborne viruses," said Krista Wigginton, assistant professor of civil and environmental engineering. "There are limited technologies for air disinfection, so this is an important finding."

This parallel approach--combining filtration and inactivation of airborne pathogens--could provide a more efficient way of providing sterile air than technologies used today, such as filtration and ultraviolet light. Traditional masks operate using only filtration for protection.

Ultraviolet irradiation can't sterilize as quickly, as throughly or as compactly has nonthermal plasma.

Clack and his research team have begun testing their reactor on ventilation air streams at a livestock farm near Ann Arbor. Animal agriculture and its vulnerability to contagious livestock diseases such as avian influenza has a demonstrated near-term need for such technologies.
-end-
Read the paper: Inactivation of airborne viruses using a packed bed non-thermal plasma reactor

The Clack Lab

Image Link: http://myumi.ch/6k1Rk

Video link: http://myumi.ch/JY5kZ

Paper link: https://iopscience.iop.org/article/10.1088/1361-6463/ab1466/pdf

University of Michigan

Related Virus Articles from Brightsurf:

Researchers develop virus live stream to study virus infection
Researchers from the Hubrecht Institute and Utrecht University developed an advanced technique that makes it possible to monitor a virus infection live.

Will the COVID-19 virus become endemic?
A new article in the journal Science by Columbia Mailman School researchers Jeffrey Shaman and Marta Galanti explores the potential for the COVID-19 virus to become endemic, a regular feature producing recurring outbreaks in humans.

Smart virus
HSE University researchers have found microRNA molecules that are potentially capable of repressing the replication of human coronaviruses, including SARS-CoV-2.

COVID-19 - The virus and the vasculature
In severe cases of COVID-19, the infection can lead to obstruction of the blood vessels in the lung, heart and kidneys.

Lab-made virus mimics COVID-19 virus
Researchers at Washington University School of Medicine in St. Louis have created a virus in the lab that infects cells and interacts with antibodies just like the COVID-19 virus, but lacks the ability to cause severe disease.

Virus prevalence associated with habitat
Levels of virus infection in lobsters seem to be related to habitat and other species, new studies of Caribbean marine protected areas have shown.

Herpes virus decoded
The genome of the herpes simplex virus 1 was decoded using new methods.

A new biosensor for the COVID-19 virus
A team of researchers from Empa, ETH Zurich and Zurich University Hospital has succeeded in developing a novel sensor for detecting the new coronavirus.

How at risk are you of getting a virus on an airplane?
New 'CALM' model on passenger movement developed using Frontera supercomputer.

Virus multiplication in 3D
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies.

Read More: Virus News and Virus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.