Nav: Home

Next gen solar cells perform better when there's a camera around

April 08, 2020

A literal "trick of the light" can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

The discovery opens a pathway to improved quality control for commercial production.

On small scales, perovskite solar cells - which promise cheap and abundant solar energy generation - are already almost as efficient as silicon ones.

However, as scale increases the perovskite cells perform less well, because of nanoscale surface imperfections resulting from the way they are made.

As the number of unwanted tiny lumps and bumps grows, the amount of solar power generated per square centimetre drops off.

Now, however, Australian researchers have come up with a solution - using a camera.

In a paper published in the journal Nano Energy, first author Dr Kevin Rietwyk and his colleagues from Australia's ARC Centre of Excellence in Exciton Science, Monash University, Wuhan University of Technology and CSIRO Energy, describe how critical imperfections invisible to the naked eye can be detected by shining blue light onto the cells and recording the infrared light that bounces back.

The technique employs a property of solar cells called "photoluminescence".

This is the process by which an electron inside a molecule or semiconductor is briefly powered-up by an incoming photon. When the electron returns to its normal state, a photon is spat back out.

Microscale flaws alter the amount of infrared produced. Analysing how the extent of the light emitted from the solar cell varies under different operating conditions gives clues to how well the cell is functioning.

"Using this technique, we can rapidly identify a whole range of imperfections," said Dr Rietwyk, an Exciton Science researcher based at Monash University.

"We can then figure out if there are enough of them to cause a problem and, if so, adjust the manufacturing process to fix it. It makes for a very effective quality control method."

Equivalent checking methods are common in silicon cell manufacture. By employing an innovative light modulation, Dr Rietwyk and colleagues have designed a new approach that rises to the challenges posed by next-gen cells - opening a pathway to a scalable and potentially commercial device.

Senior author Professor Udo Bach, also of Exciton Science and Monash University, said the team had performed successful test runs on batches of small research cells. The technology, he explained, will be simple to scale up and commercialise.

"This research shows clearly that the performance of perovskite solar cell devices is influenced by the number of small imperfections in the cells themselves," he said.

"Using light modulation to find these flaws is a quick and robust way to solve the problem - and one that should work on any level of production."
-end-
Dr Noel Duffy from CSIRO Energy in Melbourne was joint senior author.

Dr Rietwyk and Professor Bach are based at Monash University, Australia, as are co-authors Boer Tan, Adam Surmiak, Jianfeng Lu, David McMeekin and Sonia Raga. Dr Lu also holds a position at Wuhan University of Technology in China.

A copy of the paper can be accessed here: https://www.sciencedirect.com/science/article/pii/S2211285520303128?via%3Dihub

ARC Centre of Excellence in Exciton Science

Related Silicon Articles:

For solar boom, scrap silicon for this promising mineral
Cornell University engineers have found that photovoltaic wafers in solar panels with all-perovskite structures outperform photovoltaic cells made from state-of-the-art crystalline silicon, as well as perovskite-silicon tandem cells, which are stacked pancake-style cells that absorb light better.
Surprisingly strong and deformable silicon
Researchers at ETH have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought.
A leap in using silicon for battery anodes
Scientists have come up with a novel way to use silicon as an energy storage ingredient.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
No storm in a teacup -- it's a cyclone on a silicon chip
University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.
Black silicon can help detect explosives
Scientists from Far Eastern Federal University (FEFU), Far Eastern Branch of the Russian Academy of Sciences, Swinburne University of Technology, and Melbourne Center for Nanofabrication developed an ultrasensitive detector based on black silicon.
2D antimony holds promise for post-silicon electronics
Researchers in the Cockrell School of Engineering are searching for alternative materials to silicon with semiconducting properties that could form the basis for an alternative chip.
Silicon technology boost with graphene and 2D materials
In a review published in Nature, ICFO researchers and collaborators report on the current state, challenges, opportunities of graphene and 2D material integration in Silicon technology.
Light and sound in silicon chips: The slower the better
Acoustics is a missing dimension in silicon chips because acoustics can complete specific tasks that are difficult to do with electronics and optics alone.
Silicon as a semiconductor: Silicon carbide would be much more efficient
In power electronics, semiconductors are based on the element silicon -- but the energy efficiency of silicon carbide would be much higher.
More Silicon News and Silicon Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.