Nav: Home

Belle II yields first results in search of the Z' boson

April 08, 2020

The Belle II experiment has been collecting data from physical measurements for about one year now. After several years of rebuilding work, both the SuperKEKB electron-positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate. Scientists at 12 German research institutions are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data. Johannes Gutenberg University Mainz (JGU) supported this project by developing and programming special electronics for monitoring the pixel vertex detector.

With the help of Belle II, scientists are looking for traces of new physics that can be used to explain the unequal occurrence of matter and anti-matter and the mysterious dark matter. One of the so far undiscovered particles that the Belle II detector is looking for is the Z? boson - a variant of the Z boson, which acts as an exchange particle for the weak interaction.

As far as we know, about 25 percent of the universe consists of dark matter, whereas visible matter accounts for just under 5 percent of the energy budget. Both forms of matter attract each other through gravity. Dark matter thus forms a kind of template for the distribution of visible matter. This can be seen, for example, in the arrangement of galaxies in the universe.

Link between dark and normal matter

The Z' boson may play an interesting role in the interaction between dark and visible matter, it could be in fact a kind of mediator between the two forms of matter). The Z' boson can - at least theoretically - result from the collision of electrons (matter) and positrons (anti-matter) in the SuperKEKB and then decay into invisible dark matter particles.

The Z' boson can thus help scientists to understand the behavior of dark matter. What's more, the discovery of the Z' boson could also explain other observations that are not consistent with the Standard Model, the fundamental theory of particle physics.

Important clue: Detection of muon pairs

But how can the Z' boson be detected in the Belle II detector? Not directly - that much is sure. Theoretical models and simulations predict that the Z' boson could reveal itself through interactions with muons, the heavier relatives of electrons. If scientists discover an unusually high number of muon pairs of opposite charge after the electron/positron collisions as well as unexpected deviations in energy and momentum conservation, this would be an important indication of the Z? boson. However, the new Belle II data has not yet provided any indication of the Z? boson. But with the new data, the scientists can limit the mass and coupling strengths of the Z? boson with previously unattainable accuracy.

These initial results come from the analysis of a small amount of data collected during the start-up phase of SuperKEKB in 2018. Belle II went into full operation on March 25, 2019. Since then, the experiment has been collecting data while continuously improving the collision rate of electrons and positrons. Once the experiment is perfectly tuned, it will provide considerably more data than in the recently published analyses. The physicists thus hope to gain new insights into the nature of dark matter and other unanswered questions.
-end-
The German working groups in the Belle II experiment are funded by the following institutions and programs:

* German Federal Ministry of Education and Research (BMBF): collaborative research project "Exploration of the Universe and Matter" (ErUM)

* German Research Foundation (DFG) within the framework of Germany's Excellence Strategy ORIGINS: EXC-2094 - 390783311 Quantum Universe: EXC-2121 - 390833306

* European Research Council (ERC)

* European Union's Horizon 2020 - grant agreement No 822070

* Helmholtz Association

* Max Planck Society.

Related links:

https://www.kek.jp/en/ - High Energy Accelerator Research Organization (KEK))

http://belle2.jp - Belle II experiment

https://www.kek.jp/en/newsroom/2020/04/07/0000/ - KEK press release "Belle II explores new 'portal' into dark matter - First results from the Belle II Experiment" (7 April 2020)

Read more: https://www.uni-mainz.de/presse/20191_ENG_HTML.php - press release "First particles circulate in SuperKEKB accelerator" (14 April 2016)

Johannes Gutenberg Universitaet Mainz

Related Dark Matter Articles:

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.
Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.
Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.
Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.
New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#573 Penis. That's It. That's the title.
This episode is about penises. That was your content warning. Penises. Where they came from. Why they're useful. And the many, many wild things that animals do with them. Come for the world's oldest penis, stay for the creature that ejaculates 80 percent of its bodyweight. Host Bethany Brookshire talks with Emily Willingham about her new book, "Phallacy: Life Lessons from the Animal Penis".
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.