X-ray vision through the water window

April 08, 2020

The ability to generate light pulses of sub-femtosecond duration, first demonstrated some 20 years ago, has given rise to an entirely new field: attosecond science and technology. Table-top laser systems have emerged that enable studies that for decades were but a distant dream --- to follow, image and characterise electronic processes in atoms, molecules and solids on their natural, attosecond timescales. The laser systems that make such studies possible typically operate in the extreme ultraviolet spectral band. There has long been a push to achieve higher photon energies though. Of particular interest is the 'water window', occupied by soft x-ray radiation with wavelengths between 2.2 and 4.4 nm. That spectral window owes its name, and importance, to the fact that at those frequencies, photons are not absorbed by oxygen (and hence by water), but they are by carbon. This is ideal for studying organic molecules and biological specimens in their natural aqueous environment. Today, a handful of attosecond sources spanning this frequency range exist, but their applicability is limited by relatively low repetition rates of 1 kHz or below, which in turn means low count rates and poor signal-to-noise ratios. Writing in Optica, Justinas Pupeikis and colleagues in the Ultrafast Laser Physics group of Prof. Ursula Keller at the Institute for Quantum Electronics report now an essential leap to overcome the limitations of the prior sources. They present the first soft-x-ray source that spans the full water window at 100 kHz repetition rate --- a hundredfold improvement compared to the state-of-the-art sources.

A boost in technological capability

The bottleneck in producing soft x-rays at high repetition rates has been the lack of suitable laser systems to drive the key process underlying attosecond-pulse generation in table--top systems. That process is known as high-harmonic generation, and it involves an intense femtosecond laser pulse interacting with a target, typically an atomic gas. The nonlinear electronic response of the target then causes the emission of attosecond pulses at an odd-order multiple of the frequency of the driving laser field. To ensure that that response contains x-ray photons spanning the water-window range, the femtosecond source has to operate in the mid-infrared range. Also, it has to deliver high-peak-power pulses. And all of that at high repetition rates. Such a source did not exist so far.

Pupeikis et al. took up the challenge and systematically improved a layout they had already explored in earlier work, based on optical parametric chirped pulse amplification (or OPCPA for short). They had established before that the approach is promising with a view to realizing high-power mid-infrared sources, but substantial improvements were still needed to reach the performance required for the high-harmonic generation of x-ray photons in the water window. In particular, they pushed the peak power from previously 6.3 GW to 14.2 GW, and they reached an average power of 25 W for pulses just a bit longer than two oscillations of the underlying optical field (16.5 fs). The peak power demonstrated is comfortably the highest reported to date for any high-repetition-rate system with a wavelength above 2 μm (see the figure, panel a).

Ready for the x-ray room

With this level of performance at their disposal, the team was ready for the next stage, frequency upconversion through high-harmonic generation. For that, the output beam of the OPCPA was routed via a periscope system to another laboratory more than 15 m away, to accommodate for local lab-space constraints. There, the beam met a helium target, kept at a pressure of 45 bar. Such high pressure was necessary for phase-matching between the infrared and the x-ray radiation, and thus optimal energy-conversion efficiency.

All pieces carefully put in place, the system indeed delivered. It generated coherent soft x-ray radiation extending to an energy of 620 eV (2 nm wavelength), covering the full water window --- a stand-out achievement relative to other high-repetition-rate sources in this frequency range, see panel b of the figure.

A window of opportunity

This demonstration opens up a vast spectrum of fresh opportunities. Coherent imaging in the water-window spectral region, highly relevant for chemistry and biology, should be possible with a compact setup. At the same time, the high repetition rate available helps, for instance, addressing the limitations due to space-charge formation which plague photoemission experiments with pulsed sources. Moreover, the 'water window' comprises not only the K-edges of carbon, nitrogen and oxygen, but also the L- and M-edges of a range of metals, which can now be studied with higher sensitivity or specificity.

With such bright prospects, the realization of the source now presented heralds the beginning of the next generation of attosecond technology, one where experimentalists for the first time can make combined use of high repetition rates and high photon energies. An attosecond beamline designed to exploit these new capabilities is currently under construction in the Keller lab.
-end-


ETH Zurich Department of Physics

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.