Wallflowers could lead to new drugs

April 08, 2020

Plant-derived chemicals called cardenolides have long been used to treat heart disease, and have shown potential as cancer therapies. But the compounds are very toxic, making it difficult for doctors to prescribe a dose that works without harming the patient.

For decades, researchers have longed to figure out how plants biosynthesize cardenolides, knowledge that could help them discover and develop safer versions of the drugs. Unfortunately, the cardenolides' best-known plant sources - foxglove and milkweed - are not amenable to experimental techniques for identifying the genes and enzymes that are involved in producing the chemicals.

In a eLife on April 7, a multi-institution team led by Boyce Thompson Institute faculty member
"Twelve different plant families produce cardenolides, but nobody knows exactly how they make them," Jander said. "I was looking for the best plant to study this pathway and settled on wormseed wallflower." Jander is also an adjunct professor at Cornell University's School of Integrative Plant Science.

The species is a great model for genetic studies because it has a short life cycle and is readily inbred, he said. "We need a plant that reproduces and gives us seeds quickly, which E. cheiranthoides does in about 10 weeks."

The team's study builds on work done in the 1990s by Alan Renwick, who is currently an Emeritus Professor at BTI.

In this study, the team assembled the complete genome of the wormseed wallflower and sequenced more than 9,000 expressed genes from E. cheiranthoides and 47 other Erysimum species. The results provide a foundation for identifying the genes that encode enzymes involved in the biosynthesis of cardenolides. For example, the team discovered potential pathways by which Erysimum species modify a basic precursor cardenolide, digitoxigenin, into eight more structurally complex molecules.

To further enable the use of E. cheiranthoides as a model, the genome was assembled with long read data and Hi-C scaffolding, a method that can provide a more contiguous genome than previous approaches, said Susan Strickler. Strickler is the director of the

"A high quality reference genome makes it easier for us to find genes of interest and their locations, in this case genes for the biosynthesis of cardenolides," she said.

The team is now conducting mutagenesis studies in E. cheiranthoides to allow them to find the entire cardenolide biosynthetic pathway. "Ultimately the genes underlying the biosynthetic pathways could be inserted into bacteria or yeast, which would be used to manufacture heart and cancer medicines that are safer than what are currently available," said Jander.

Evolutionary insights

The study also revealed a wide diversity of cardenolides, both across the Erysimum genus as a whole and within individual species. "What was most surprising to me is the huge chemical diversity in the genus: nearly one hundred different cardenolides and 25 or so glucosinolates," said first author Züst.

Many plant species produce either cardenolides or glucosinolates as toxic defenses against herbivorous insects. In turn, many insects have evolved resistance to one or the other chemical class, depending on which occurs in the insects' food source. Erysimum is unusual in that it produces both types of chemicals.

The team's findings suggest the genus originally produced glucosinolates as an ancestral defense, then acquired the ability to produce cardenolides as recently as 2 to 4 million years ago as part of an "arms race" between plants and insects. This second line of defense gives Erysimum an advantage against its insect enemies because none have yet developed resistance to cardenolides.

"It has allowed Erysimum to escape herbivory," said Züst. "And it is a nice example of ongoing evolution."

Züst said it was also surprising to find no apparent cost to Erysimum, in terms of growth, reproduction or general fitness, in maintaining both defensive systems. "In all but one of the species we studied, both systems are expressed and we don't see any apparent tradeoffs."

However, he theorized that the cost of maintaining dual defenses might be reflected in the rarity of Erysimum species: they are not widely distributed and grow in small patches only in niche environments - such as cracks and roadsides - not colonized by other plant species.

The study was supported by funding from the Swiss National Science Foundation (grant PZ00P3-161472), the U.S. National Science Foundation (awards 1811965 and 1645256) and a grant from the Ithaca, NY-based Triad Foundation, which funds early work in new areas of research.

"This is a nice example of putting Triad funding to use in getting good preliminary data, which will help us apply for additional grants," Jander said.

Boyce Thompson Institute

Related Cancer Therapies Articles from Brightsurf:

Intestinal bacteriophage alters effects of cancer therapies in mice
Enterococcus, a genus that includes common commensal bacteria found in the gut, harbors a bacteriophage that influences the effects of various cancer immunotherapies in ways that may be clinically relevant, researchers working in mice report.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Statins may protect against the heart harms of breast cancer therapies
Statins are widely used to lower cholesterol and prevent heart disease and related deaths, but can they also help guard against heart damage caused by certain breast cancer therapies?

'Ancient' cellular discovery key to new cancer therapies
Australian researchers have uncovered a metabolic system which could lead to new strategies for therapeutic cancer treatment.

Genetic alterations caused by cancer therapies identified
Scientists at IRB Barcelona determine the genetic alterations in the cells of cancer patients caused by the main cancer therapies.

The art of cancer caregiving: How art therapies benefits those caring for cancer patients
A recent Drexel University study showed coloring and open-studio art therapy benefits stressed caregivers of cancer patients.

Same but different: unique cancer traits key to targeted therapies
Melbourne researchers have discovered that the key to personalised therapies for some types of lung cancers may be to focus on their differences, not their similarities.

Precious metal flecks could be catalyst for better cancer therapies
Tiny extracts of a precious metal used widely in industry could play a vital role in new cancer therapies.

Testing therapies on mini-tumors of head and neck cancer
Head and neck cancer is an aggressive type of cancer that often recurs, despite patients undergoing harsh treatments.

New strategy of reprogramming regulatory T cells may improve cancer therapies
Therapies that harness the power of the immune system against cancer have made remarkable progress against certain tumors but still remain ineffective in most cancer patients.

Read More: Cancer Therapies News and Cancer Therapies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.