Gusev Crater once held a lake after all, says ASU Mars scientist

April 09, 2014

TEMPE, Ariz. - If desert mirages occur on Mars, "Lake Gusev" belongs among them. This come-and-go body of ancient water has come and gone more than once, at least in the eyes of Mars scientists.

Now, however, it's finally shifting into sharper focus, thanks to a new analysis of old data by a team led by Steve Ruff, associate research professor at Arizona State University's Mars Space Flight Facility in the School of Earth and Space Exploration. The team's report was just published in the April 2014 issue of the journal Geology.

The story begins in early 2004, when NASA landed Spirit, one of its two Mars Exploration Rovers, inside 100-mile-wide Gusev Crater. Why Gusev? Because from orbit, Gusev looked, with its southern rim breached by a meandering river channel, as if it once held a lake - and water-deposited rocks were the rover mission's focus. Yet when Spirit began to explore, scientists found Gusev's floor was paved not with lakebed sediments, but volcanic rocks.

Less than two miles away however stood the Columbia Hills, 300 feet high. When Spirit drove up into them, it indeed discovered ancient rocks that had been altered by water. But to scientists' chagrin, no lake sediments were among them. Instead, scientists discovered evidence of hydrothermal activity, essentially hot springs like those in Yellowstone National Park.

But there's hope yet for Lake Gusev, thanks to a Columbia Hills rock outcrop dubbed Comanche. This outcrop is unusually rich in magnesium-iron carbonate minerals, a discovery made in 2010 that Ruff played a major role in making. While Comanche's carbonate minerals were originally attributed to hydrothermal activity, the team's new analysis points to a different origin.

Cool waters

Says Ruff, "We looked more closely at the composition and geologic setting of Comanche and nearby outcrops. There's good evidence that low temperature surface waters introduced the carbonates into Comanche rather than hot water rising from deep down."

Comanche started out as a volcanic ash deposit known as tephra that originally covered the Columbia Hills and adjacent plains. This material, Ruff explains, came from explosive eruptions somewhere within or around Gusev.

Then floodwaters entered the crater through the huge valley that breaches Gusev's southern rim. These floods appear to have ponded long enough to alter the tephra, producing briny solutions. When the brines evaporated, they left behind residues of carbonate minerals. As the lake filled and dried, perhaps many times in succession, it loaded Comanche and its neighbor rocks with carbonates.

"The lake didn't have to be big," Ruff explains. "The Columbia Hills stand 300 feet high, but they're in the lowest part of Gusev. So a deep, crater-spanning lake wasn't needed."

Today, the Columbia Hills rise as an island of older terrain surrounded by younger lava flows, Ruff says. "Comanche and a neighbor outcrop called Algonquin are remnants of the older and much more widespread tephra deposit. The wind has eroded most of that deposit, also carrying away much of the evidence for an ancient lake."

Return to Gusev?

Mars rover Spirit fell silent on a winter night in March 2010, and it has never been heard from since. Spirit left most of the Columbia Hills and other Gusev targets unexplored. Ruff says that as NASA evaluates landing sites for its new sample-collecting rover in 2020, Gusev Crater deserves serious consideration.

"Going back to Gusev would give us an opportunity for a second field season there, which any terrestrial geologist would understand," argues Ruff. "After the first field season with Spirit, we now have a bunch more questions and new hypotheses that can be addressed by going back."

Because the Mars 2020 rover mission will collect and cache samples for potential return to Earth, Ruff says, that makes going to an already visited site more important.

"Scientifically and operationally it makes sense to go to a place which we know has geologically diverse - and astrobiologically interesting - materials to sample," Ruff argues.

"And we know exactly where to find them."
-end-


Arizona State University

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.