Nav: Home

Uncovering the secrets of white cell power

April 09, 2017

One of the mysteries of the living body is the movement of cells - not just in the blood, but through cellular and other barriers. New research in the Weizmann Institute of Science has shed light on the subject, especially on the movement of immune cells that race to the sites of infection and inflammation. The study revealed that these cells - white blood cells - actively open large gaps in the internal lining of the blood vessels, so they can exit through the vessel walls and rapidly get to areas of infection.

Prof. Ronen Alon and his group in the Weizmann Institute's Immunology Department discovered how various white blood cells push their way through the lining of the blood vessels when they reach their particular "exit ramps." Using their nuclei to exert force, they insert themselves between - as well as into - the cells in the vessel walls called endothelial cells. Dismantling structural filaments within the cytoskeletons - the internal skeletons - of the endothelial cells creates the large holes - several microns in diameter.

Alon explains that the nucleus is the largest, most rigid structure in the cell. When driven by motors specifically engaged for this function, is tough enough to push through the barrier imposed by the blood vessel walls.

The scientists tracked the cytoskeletons of endothelial cells as they were crossed by immune cells in real time, the behavior of the nuclei of various white blood cells during active squeezing and the fate of the various types of actin fibers that make up the endothelial cell skeletons. The researchers used a number of methods, including fluorescence and electron microscopy, in collaboration with Dr. Eugenia Klein of the Microscopy Unit; a unique system in Alon's lab for simulating blood vessels in a test tube; and in vivo imaging with Prof. Sussan Nourshargh of Queen Mary University of London. The results of this research, conducted in Alon's lab by research students Sagi Barzilai and Francesco Roncato and postdoctoral fellow Dr. Sandeep Kumar Yadav, were recently reported in Cell Reports.

Common wisdom in this field had held that the endothelial cells must help immune cells squeeze through by contracting themselves like small muscles, but the present study found no evidence for such contraction-based help. Alon says: "Our study shows that the endothelial cells, which were thought to be dynamic assistants in this process of crossing of blood vessel walls, are really more responders to the 'physical work' invested by the white blood cell motors and nuclei in generating gaps and crossing through blood vessels."

Significance for cancer research

In addition to increasing the basic understanding of how the various arms of the immune system reach their sites of differentiation and activity, these findings may aid in cancer research. "We believe that small subsets of metastatic tumor cells have the ability to adopt the mechanisms used by immune cells to exit the blood vessels into the lungs, the bone marrow, the brain and other organs. If this is true, we might be able to identify these subsets and target them before these cells leave their original tumor sites and invade distant organs," says Alon.
-end-
Prof. Ronen Alon's research is supported by the Herbert L. Janowsky Lung Cancer Research Fund; Mr. and Mrs. William Glied, Canada; and Carol A. Milett, Aventura, FL. Prof. Alon is the incumbent of the Linda Jacobs Professorial Chair in Immune and Stem Cell Research.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute of Science

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...