Nav: Home

An advance for precision medicine

April 09, 2018

PORTLAND, Oregon - Of the 37 trillion cells in the typical human body, the ability to distinguish one type of cell from another isn't as straightforward as you may think.

OHSU scientists have for the first time developed a method to quickly and efficiently recognize the subtypes of cells within the body. Led by researchers in the lab of Andrew Adey, Ph.D., the discovery will improve understanding of disease at the molecular level. This new technology ultimately could enable the development of precise treatments of conditions such as cancer, disorders that destroy neurons in the brain, and diseases that affect the heart and blood vessels.

The findings will be published April 9 in the journal Nature Biotechnology.

The new technology provides a method to scale up a previously known method for profiling cell types distinguished by the pattern of chemical markers studding their DNA.

"It will be incredibly valuable in any environment where there is cell type heterogeneity [diversity]," said Adey, senior author, assistant professor of molecular and medical genetics in the OHSU School of Medicine and a member of the Knight Cardiovascular Institute. "The major areas of interest will be cancer and neuroscience, but we are also applying it to cardiovascular disease."

All cells carry the same genome, the complete set of genes encoded within the cell. The pattern of which genes are expressed in a given cell is what distinguishes a neuron from, say, a liver cell. Even then, it turns out that there are distinctions between similar cells. In 2017, scientists demonstrated a way of discerning subtypes of neurons by measuring the chemical markers between them -- the pattern of methyl groups connected to its DNA, known as its methylome.

The new research by Adey and co-authors develops a method for profiling the methylome of large numbers of individual cells at one time by adding unique DNA sequence combinations, or indexes, to each cell that are read out by a sequencing instrument. The scientists used the new indexing method on several human cell lines and from a mouse brain to reveal the methylome of 3,282 single cells. That's roughly a 40-fold increase in throughput from the existing method of single-cell sequencing.

"We can profile thousands of cells simultaneously," Adey said. "This technology reduces the cost to prepare single-cell DNA methylation libraries to less than 50 cents per cell from $20 to $50 per cell."
-end-
REFERENCE: Ryan M Mulqueen, Dmitry Pokholok, Steven J Norberg, Kristof A Torkenczy, Andrew J Fields, Duanchen Sun, John R Sinnamon, Jay Shendure, Cole Trapnell, Brian J O'Roak, Zheng Xia, Frank J Steemers, Andrew C Adey, "Highly scalable generation of DNA methylation profiles in singles cells," Nature Biotechnology, April 9, 2018, DOI: 10.1038/nbt.4112

Funding for the research was supported the Rett Syndrome Research Trust, the Knight Cardiovascular Institute, and the National Institute of General Medical Sciences, a branch of the National Institutes of Health, grant 1R35GM124704-01.

In the interest of ensuring the integrity of our research and as part of our commitment to public transparency, OHSU actively regulates, tracks and manages relationships that our researchers may hold with entities outside of OHSU. In regards to this research, Andrew Adey and other authors on this manuscript also hold patents pertaining to these technologies. Review details of OHSU's conflict of interest program to find out more about how OHSU manages these business relationships.

Links:

Oregon Health & Science University

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.