Nav: Home

Mapping cellular diversity by looking for common topics of gene control

April 09, 2019

A Belgian team of computational biologists led by Stein Aerts (VIB-KU Leuven) has developed a new bioinformatics method called cisTopic. Inspired by text-mining methods, cisTopic helps scientists to gain insight into the mechanisms underlying the differences in gene regulation across and within the cells in our body by looking for common topics. In a new publication in Nature Methods, Aerts and his team demonstrate the broad range of applications of this method, from brain research to cancer biology.

Our genomes are controlled by combinations of regulatory molecules that "switch on" target genes in our DNA. These regulatory molecules bind to so-called enhancer and promoter regions in our chromosomes. Understanding when and how they are activated, can teach us a lot about the cellular diversity in our bodies.

"All the cells in our body essentially contain the same DNA," explains prof. Stein Aerts, who heads the lab for computational biology at VIB and KU Leuven. "What makes every cell type unique is which genes are active at any given time."

Recent advances in single-cell technology have enabled scientists like Aerts to look at gene activity and the accessibility of regulatory DNA regions for thousands of individual cells. But this information has not yet solved the challenge of reverse engineering the genomic regulatory code.

Clustering cells

Carmen Bravo González-Blas and Liesbeth Minnoye, two young researchers in Aerts' lab, set out to tackle this problem. "The data we can obtain from a single cell, regarding accessibility of specific regulatory regions in its DNA, is very sparse. Yet, we wanted to group individual cells into clusters based on similarities of these accessible regions."

To tackle this problem, Bravo González-Blas borrowed a computational technique from the text-mining field, called "topic modelling". She explains: "In text mining, computers can discover "topics" from large collections of text, as well as terms that are important for each topic. When applied to our problem of gene control, the computer discovers topics that are important for each cell type in our body. It also allowed us to identify regulatory regions for each topic."

"We evaluated our new method on a variety of data sets, and found that it allows us to accurately recover both expected and new cell types," adds Minnoye. "Particularly on very sparse data, our method is more robust than previously developed approaches."

Learning more about complex tissues

The researchers applied cisTopic to cell populations that are biologically complex, such as the cells present in the mammalian brain. Not only did cisTopic allow them to recover the major cell types in the brain, but the team was also able to identify new subpopulations and master regulators of neuronal cell types.

"In addition to the brain, we also used cisTopic to investigate dynamic changes in gene accessibility in melanoma cell cultures from patients," adds Aerts. "When we modulated one of the known important modulators in these cancer cells, we could for the first time track changes in the accessibility of different DNA regions over time. Such approaches will finally allow us to better understand what these master regulators actually do in cancer cells, and which genes they control."

These different applications illustrate the value of the team's new method for studying the players and mechanism that orchestrate gene regulation in our cells. According to computational biologists like Aerts, this is an important step towards real-time and personalized monitoring of cell states in health and disease.
-end-
Publication

cisTopic: cis-Regulatory topic modelling on single-cell ATAC-seq data, Bravo González-Blas, Minnoye et al. Nature Methods

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: patienteninfo@vib.be?. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

VIB (the Flanders Institute for Biotechnology)

Related Cancer Cells Articles:

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
Plant-derived SVC112 hits cancer stem cells, leaves healthy cells alone
Study shows Colorado drug SVC112 stops production of proteins that cancer stem cells need to survive and grow.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
Brain cancer: Typical mutation in cancer cells stifles immune response
The exchange of a single amino acid building block in a metabolic enzyme can lead to cancer.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.