Nav: Home

Researchers reveal novel therapeutic strategy for ALS

April 09, 2019

In a study published online in Brain on April 1, researchers from Dr. XU Jin's lab at the Institute of Neuroscience of the Chinese Academy of Sciences and their collaborators revealed a new cellular mechanism for amyotrophic lateral sclerosis (ALS), suggested a novel therapeutic strategy targeting the RNA degradation pathway, and identified an asthma drug as a potential medication for ALS.

ALS is the most common motor neuron disease and one of the most devastating neurodegenerative diseases caused by progressive motor neuron degeneration. There is no cure for the disease and current treatment options are very limited. Thus, the disease is characterized by fast progression and high lethality.

Recent genetic advances have identified a group of new genes whose mutations contribute to the development of ALS. Among these genes, C9orf72 is the most common genetic cause of familial ALS, and even contributes to sporadic ALS.

Unlike commonly seen point mutations and deletions, (GGGGCC)n hexa-nucleotide repeats expansion (HRE) in a non-coding region of C9orf72 is the culprit. Intriguingly, these repeats could generate RNA and protein products and affect RNA metabolism as some other ALS-causing mutant proteins do, although the underlying mechanisms remain to be fully understood.

In this study, by coupling unbiased bioinformatic analysis of various transcriptome studies with validation experiments in multiple C9orf72 cellular and animal models, Dr. XU's team unveiled the inhibition of the nonsense-mediated mRNA decay (NMD) pathway as a conserved consequence of the C9orf72 HRE.

NMD is a type of RNA surveillance machinery vital for the removal of defective or harmful RNA generated from faulty transcription, alternative splicing or viral infection. Key protein components of NMD are found in cytoplasmic structures called processing bodies.

Interestingly, researchers found that HRE-derived neurotoxic dipeptide repeats (DPRs) could inhibit the NMD pathway by suppressing processing-body formation while promoting stress granule formation.

To test whether the NMD pathway could be a potential therapeutic target for ALS, they first genetically reactivated the NMD pathway and found that core NMD genes, such as UPF1, could effectively protect against C9orf72 DPRs neurotoxicity. Next, after evaluating several potential NMD-activating compounds, they identified Tranilast as the most promising NMD-activating drug and found that it could rescue cells and fruit flies from C9orf72 DPR-induced neurotoxicity.

Given that blood-brain barrier-permeable Tranilast has been clinically used to treat asthma with a great safety record since the 1980s, this study will prompt future pre-clinical and clinical investigations to test the therapeutic potential of Tranilast and other NMD-activating compounds in ALS patients with defective RNA metabolism.
-end-
The patent related to this discovery is pending.

Chinese Academy of Sciences Headquarters

Related Amyotrophic Lateral Sclerosis Articles:

Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation
Chiral nanoparticles which twist the light were theoretically predicted to experience lateral forces perpendicular to light vector but lacks experimental verification.
Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.
Researchers delay onset of amyotrophic lateral sclerosis (ALS) in laboratory models
Scientists have delayed the onset of amyotrophic lateral sclerosis (ALS) in laboratory models, leaving them cautiously optimistic that the result, combined with other clinical advances, points to a potential treatment for ALS in humans.
Emerging role of adenosine in brain disorders and amyotrophic lateral sclerosis
The role of adenosine in neurodegeneration and neuroregeneration has led to growing attention on adenosine receptors as potential drug targets in a range of brain disorders, including neuroregenerative therapy and treatment for amyotrophyic lateral sclerosis (ALS).
The gut may be involved in the development of multiple sclerosis
It is incompletely understood which factors in patients with multiple sclerosis act as a trigger for the immune system to attack the brain and spinal cord.
New clues about the origins of familial forms of Amyotrophic lateral sclerosis
A Brazilian study made important progress in understanding the accumulation of one of the proteins involved in amyotrophic lateral sclerosis (ALS).
Recrutement of a lateral root developmental pathway into root nodule formation of legumes
Peas and other legumes develop spherical or cylindrical structures -- called nodules -- in their roots to establish a mutually beneficial relationship with bacteria that convert atmospheric nitrogen into a useable nutrient for the legume plant.
Slowing the progression of multiple sclerosis
Over 77,000 Canadians are living with multiple sclerosis, a disease whose causes still remain unknown.
Columbia professor develops a detector that stops lateral phishing attacks
To alleviate this growing problem of email scams, Data Science Institute member Asaf Cidon helped develop a prototype of a machine-learning based detector that automatically detects and stops lateral phishing attacks.
Cochrane Review: Lateral flow urine lipoarabinomannan test to detect TB in people with HIV
TB causes more deaths in people living with HIV than any other disease, with more than 300,000 deaths in 2017.
More Amyotrophic Lateral Sclerosis News and Amyotrophic Lateral Sclerosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.