Nav: Home

Specialist enzymes make E. coli antibiotic resistant at low pH

April 09, 2019

Scientists long puzzled over why bacteria contain so many "redundant" enzymes. Why make several molecules that do the same job, interchangeably, when it would be much more efficient to make just one?

New research from Washington University in St. Louis suggests that many of these so-called redundant enzymes are actually specialists that ensure maximal growth across different environments.

Further, these specialist enzymes were found to increase E. coli's resistance to antibiotics at low pH conditions, such as those found in the GI tract or urinary tract -- raising concerns that current antibiotic susceptibility tests are inadequate. The research from the laboratory of Petra Levin, professor of biology in Arts & Sciences, is published April 9 in the journal eLife.

"Some enzymes that appear to be redundant for bacterial growth and fitness under standard laboratory conditions are specialized for particular environmental conditions," said Elizabeth Mueller, a PhD candidate and first author of the new study. "We probably miss a lot of interesting and clinically relevant biology by studying bacterial cells predominately during growth in nutrient-rich, neutral-pH, aerated-growth media."

Mueller found that a subset of enzymes involved in making E. coli 's cell wall are pH specialists that ensure robust growth and cell wall integrity in a wide pH range. The work was completed with collaborators at Newcastle University in Britain and Utrecht University in the Netherlands.

Why so many?

It's like opening someone's closet, finding a pile of shoes, and asking, "Why so many?" If a person can get along fine with just one pair -- and it doesn't matter which one -- why keep all the others? Upon closer inspection, however, you see that pile of shoes is made up of running sneakers and hiking boots, wool slippers and rain boots, flip-flops and stilettos. They're all shoes, but different styles suit different occasions. You could wear a pair of wellies on a 3-mile run, but you'd get fewer blisters in sneakers. The same appears to be true for E. coli cell-wall enzymes in different pH conditions.

For this study , the authors generated strains of E. coli that were missing nonessential cell-wall enzymes. These strains were then grown in medium with pH representative of what E. coli would find in the lower GI tract and urinary tract. The authors found that in these conditions, instead of being interchangeable, several of these enzymes helped the E. coli grow better.

The study focused on two pH specialist enzymes: PBP1a and PBP1b. PBP1a was required for maximal growth in alkaline conditions, while PBP1b was necessary in acidic conditions. If a cell is missing one of these enzymes and grown in that enzyme's "specialist" pH condition, then that cell will have decreased viability.

Interestingly, redundancy in cell wall synthesis appears to have consequences for E. coli's sensitivity to certain cell wall-active antibiotics. The activity of PBP1b in acidic conditions increases the cell's resistance to specific beta-lactam antibiotics by as much as 64-fold, compared to growth in standard culture conditions.

"Most clinical labs test antimicrobial susceptibility by growing bacterial cultures in nutrient-rich media at around neutral pH," Mueller said. "These conditions poorly reflect those experienced by pathogens at most sites in the human body."

"Our study supports the idea that environmental conditions at the infection site may affect the efficacy of antibiotic treatment," she added.

Future work into the mechanism behind how PBP1b protects the cell may reveal new antimicrobial targets that can be inhibited across pH conditions. Additionally, researchers in the Levin laboratory predict that future research will identify similar enzyme specialists in other bacteria. These specialists could explain high levels of redundancy in other classes of enzymes, particularly those located outside of the cell that are exposed to the environment.
-end-
This research was supported by funding from the National Science Foundation (DGE-1745038), Wellcome (101824/Z/13/Z), and the National Institutes of Health (NIH) (MIRA, GM127331 and GM64671).

Washington University in St. Louis

Related Antibiotics Articles:

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.
Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.
Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.
Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.
Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.
Antibiotics with novel mechanism of action discovered
Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics.
Resistance can spread even without the use of antibiotics
Antibiotic resistance does not spread only where and when antibiotics are used in large quantities, ETH researchers conclude from laboratory experiments.
Selective antibiotics following nature's example
Chemists from Konstanz develop selective agents to combat infectious diseases -- based on the structures of natural products
Antibiotics can inhibit skin lymphoma
New research from the LEO Foundation Skin Immunology Research Center at the University of Copenhagen shows, surprisingly, that antibiotics inhibit cancer in the skin in patients with rare type of lymphoma.
Antibiotics may treat endometriosis
Researchers at Washington University School of Medicine in St. Louis have found that treating mice with an antibiotic reduces the size of lesions caused by endometriosis.
More Antibiotics News and Antibiotics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.