A new way of finding compounds that prevent aging

April 09, 2019

Researchers at Karolinska Institutet in Sweden have developed a new method for identifying compounds that prevent ageing. The method is based on a new way of determining age in cultured human cells and is reported in a study in the journal Cell Reports. Using the method, the researchers found a group of candidate substances that they predict to rejuvenate human cells, and that extend the lifespan and improve the health of the model organism C. elegans.

Ageing is an inevitable process for all living organisms, characterised by their progressive functional decline at the molecular, cellular, and organismal level. This makes ageing a key determinant for human lifespan and a major risk factor for many so-called age-related diseases, such as Alzheimer's disease, diabetes, cardiovascular diseases and cancer. Preventing ageing by pharmaceutical means is therefore an attractive strategy to help people live healthier and longer lives.

Finding substances that prevent ageing is challenging. Experiments on mammals are costly and time consuming. Using cultured human cells, it is possible to test a larger number of substances, but ageing is a complex process that is difficult to measure at the cellular level. A solution to this problem is now presented by researchers at Karolinska Institutet, in a study published in the journal Cell Reports.

"With our method, cell culture systems can be used to see how different substances affect the biological age of the cells," says Christian Riedel, researcher at the Department of Biosciences and Nutrition who led the study.

The researchers' method is based on a new way interpreting cellular information, in particular the so-called transcriptome. The transcriptome represents the information about all the RNA present in a particular cell or tissue at a given time. Recently, it has been shown that the transcriptome of a human cell can be used to predict the age of the person from whom the cell came.

The researchers used a large amount of transcriptome data from published sources to develop their method. With machine learning methods, so-called classifiers were built that can distinguish transcriptomes coming from "young" versus "old" donors.

The classifiers were used to analyse changes in the transcriptome of human cells, induced by over 1,300 different substances (data is openly available from the Connectivity Map, Broad Institute, USA). In this way, the researchers wanted to identify substances that could shift human transcriptomes to a "younger" age. The method identified several candidate substances, both those already known to extend the lifespan in different organisms and new candidate substances.

The most interesting substances were further investigated in the worm C. elegans, which is a common model organism for studying ageing. Two substances that could prolong the life of the worms belong to a substance class not previously shown to have this ability; inhibitors that block a protein called heat shock protein 90 (Hsp90). These substances are Monorden and Tanespimycin. Beyond extending lifespan Mondoren also improved the health of these model animals.

"We have developed an innovative method for finding substances that can prevent aging and we identify Hsp90 inhibitors as new and promising candidate substances," says Christian Riedel. "Hsp90 inhibitors are already being tested for other treatment purposes, and now further studies are needed to investigate their effect on human ageing."

The researchers show that the substances work by activating a protein called heat shock transcription factor 1 (Hsf-1). This is known to lead to the expression of so-called chaperon proteins that improve the animals' ability to keep their proteins correctly folded and thus in a functional state throughout their lifetime.
-end-
The research was supported through funding from the Swedish Research Council, the European Cooperation in Science and Technology and an ICMC project grant (ICMC is a joint research center between Karolinska Institutet and AstraZeneca).

Publication: "Transcriptomics-based screening identifies pharmacological inhibition of Hsp90 as a means to defer aging". Georges E. Janssens, Xin-Xuan Lin, Lluís Millan-Ariño, Alan Kavšek, Ilke Sen, Renée I. Seinstra, Nicholas Stroustrup, Ellen A. A. Nollen, Christian G. Riedel. Cell Reports, online 9 April 2019, doi: 10.1016/j.celrep.2019.03.044.

Karolinska Institutet

Related Ageing Articles from Brightsurf:

Cell ageing can be slowed by oxidants
At high concentrations, reactive oxygen species - known as oxidants - are harmful to cells in all organisms and have been linked to ageing.

Identified a subgroup of stem cells that resists ageing and maintains muscle regeneration
For the first time the researchers have demonstrated in a study in mice that not all muscle stem cells age equally, and have identified a subgroup with greater regenerative capacity which is maintained until geriatric age.

Ultra-processed food consumption is associated with chromosomal changes linked to biological ageing
A new study has shed light on the link between the consumption of ultra-processed foods (UPF) and the shortening of telomeres; sections of chromosomes that can be used as a marker of biological age.

The CNIO pave the way for a future gene therapy to reverse pulmonary fibrosis associated with ageing
''Our results indicate that a new therapy may be developed to prevent the development of pulmonary fibrosis associated with ageing,'' says CNIO's Maria Blasco, principal investigator of the study * Lung tissue of patients with pulmonary fibrosis does not regenerate because the cells involved in lung generation have damaged telomeres, the ends of the chromosomes.

Blood iron levels could be key to slowing ageing, gene study shows
Genes linked to ageing that could help explain why some people age at different rates to others have been identified by scientists.

Circular RNA makes fruit flies live longer
The molecule influences the insulin signalling pathway and thus prolongs life

Age research: A low level of the stress hormone cortisol contributes to the ageing process
Why do we age? What exactly is happening in our bodies?

Otago research reveals how mating influences females' life history and ageing
New University of Otago research provides insight into how males influence their mates' health, growth and fertility.

How to slow down ageing?
Healthy ageing has become one of the priorities of research in Europe.

Newly confirmed biochemical mechanism in cells is key component of the anti-ageing program
Scientists from Russia, Germany and Switzerland now confirmed a mechanism in mouse, bat and naked mole rat cells -- a 'mild depolarization' of the inner mitochondrial membrane -- that is linked to ageing: Mild depolarization regulates the creation of mitochondrial reactive oxygen species (mROS) in cells and is therefore a mechanism of the anti-ageing program.

Read More: Ageing News and Ageing Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.