Nav: Home

Genetic code of WWI soldier's cholera mapped

April 09, 2019

The oldest publicly-available strain of the cholera-causing bacterial species, Vibrio cholerae, has had its genetic code read for the first time by researchers at the Wellcome Sanger Institute and their collaborators. The bacterium was isolated from a British soldier during World War One (WWI) and stored for over 100 years before being revived and sequenced.

The results, published today (10 April) in Proceedings of the Royal Society B, show that this strain is a unique, non-toxigenic strain of V. cholerae that is distantly related to the strains of bacteria causing cholera pandemics today and in the past.

Cholera is a severe diarrhoeal disease caused by ingesting food or water that is contaminated with toxigenic V. cholerae. The disease can spread rapidly in epidemics and in global pandemics.

WWI coincided with an historical global cholera pandemic, known as the sixth pandemic, which was caused by 'classical' V. cholerae. Surprisingly, very few soldiers in the British Expeditionary Forces contracted cholera during the war, despite the disease being considered as a threat.

In 1916, a strain of V. cholerae was extracted from the stool of a British soldier who was convalescing in Egypt. Reports indicate that the isolate was taken from 'choleraic diarrhoea'. The bacterium was stored and subsequently deposited in the National Collection of Type Cultures (NCTC)* in 1920.

Researchers at the Sanger Institute revived the WWI soldier's bacteria - thought to be the oldest publicly-available V. cholerae sample - and sequenced its entire genome.

The team found this particular strain of V. cholerae was not the type capable of causing epidemic cholera, and was unrelated to the classical V. cholerae that caused the sixth pandemic at the time of WWI.

Professor Nick Thomson, lead author from the Wellcome Sanger Institute, said: "We have decoded the genome of what we believe to be the oldest archived 'live' sample of V. cholerae. It is a privilege to be able to look at the genome of this isolate. Studying strains from different points in time can give deep insights into the evolution of this species of bacteria and link that to historical reports of human disease. Even though this isolate did not cause an outbreak it is important to study those that do not cause disease as well as those that do. Hence this isolate represents a significant piece of the history of cholera, a disease that remains as important today as it was in past centuries."

Matthew Dorman, first author from the Wellcome Sanger Institute, said: "Reports in the literature indicated that there was something unusual about the strain of bacteria from the WWI soldier. It's promising to see that our genomic information aligns with those historical records. We also made other observations - under the microscope, the bacterium looks broken; it lacks a flagellum - a thin tail that enables bacteria to swim. We discovered a mutation in a gene that's critical for growing flagella, which may be the reason for this characteristic."

The soldier was reported to have cholera-like diarrhoea, but researchers now know he was infected with a non-toxigenic strain of V. cholerae. The team discovered genes that may have been responsible for producing a toxin that caused diarrhoea, but are unsure whether such diarrhoea would be classified as choleraic.

Researchers also found that this strain of V. cholerae possessed a gene for ampicillin resistance. This adds to increasing evidence that genes for antibiotic resistance in bacteria existed before the introduction of antibiotic treatments, possibly because the bacteria needed them to protect against naturally-occurring antibiotics.

Julie Russell, Head of Culture Collections at NCTC, said: "The National Collection of Type Cultures grows and maintains over 5,000 strains of bacteria from the last hundred years or so. Studying these bacteria offers a window into the past and helps scientists to understand how bacteria evolve over time, and the roles they played in history."
-end-
Notes to Editors:

Founded in 1920, NCTC is one of four Culture Collections of Public Health England that supplies over 5,000 type and reference bacterial strains of medical, scientific and veterinary importance. http://www.phe-culturecollections.org.uk/nctc

Publication:

Matthew Dorman et al. (2019) The history, genome and biology of NCTC 30: a non-pandemic Vibrio cholerae isolate from World War One. Proceedings of the Royal Society B. DOI: 10.1098/rspb.2018.2025

Funding:

This study was supported by Wellcome (206194).

Selected websites:

The Wellcome Sanger Institute


The Sanger is one of the world's leading genome and biodata institutes. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease and to understand life on Earth. Find out more at http://www.sanger.ac.uk or follow @sangerinstitute

About Wellcome

Wellcome exists to improve health by helping great ideas to thrive. We support researchers, we take on big health challenges, we campaign for better science, and we help everyone get involved with science and health research. We are a politically and financially independent foundation.

Wellcome Trust Sanger Institute

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.