Synchrotron X-ray sheds light on some of the world's oldest dinosaur eggs

April 09, 2020

An international team of scientists led by the University of the Witwatersrand in South Africa, has been able to reconstruct, in the smallest details, the skulls of some of the world's oldest known dinosaur embryos in 3D, using powerful and non-destructive synchrotron techniques at the ESRF, the European Synchrotron in France. They found that the skulls develop in the same order as those of today's crocodiles, chickens, turtles and lizards. The findings are published today in Scientific Reports.

University of the Witwatersrand scientists publish 3D reconstructions of the ~2cm-long skulls of some of the world's oldest dinosaur embryos in an article in Scientific Reports. The embryos, found in 1976 in Golden Gate Highlands National Park (Free State Province, South Africa) belong to South Africa's iconic dinosaur Massospondylus carinatus, a 5-meter long herbivore that nested in the Free State region 200 million years ago.

The scientific usefulness of the embryos was previously limited by their extremely fragile nature and tiny size. In 2015, scientists Kimi Chapelle and Jonah Choiniere, from the University of Witwatersrand, brought them to the European Synchrotron (ESRF) in Grenoble, France for scanning. At the ESRF, an 844 metre-ring of electrons travelling at the speed of light emits high-powered X-ray beams that can be used to non-destructively scan matter, including fossils. The embryos were scanned at an unprecedented level of detail - at the resolution of an individual bone cell. With these data in hand, and after nearly 3 years of data processing at Wits' laboratory, the team was able to reconstruct a 3D model of the baby dinosaur skull. "No lab CT scanner in the world can generate these kinds of data," said Vincent Fernandez, one of the co-authors and scientist at the Natural History Museum in London (UK). "Only with a huge facility like the ESRF can we unlock the hidden potential of our most exciting fossils. This research is a great example of a global collaboration between Europe and the South African National Research Foundation", he adds.

Up until now, it was believed that the embryos in those eggs had died just before hatching. However, during the study, lead author Chapelle noticed similarities with the developing embryos of living dinosaur relatives (crocodiles, chickens, turtles, and lizards). By comparing which bones of the skull were present at different stages of their embryonic development, Chapelle and co-authors can now show that the Massospondylus embryos were actually much younger than previously thought and were only at 60% through their incubation period.

The team also found that each embryo had two types of teeth preserved in its developing jaws. One set was made up of very simple triangular teeth that would have been resorbed or shed before hatching, just like geckos and crocodiles today. The second set were very similar to those of adults, and would be the ones that the embryos hatched with. "I was really surprised to find that these embryos not only had teeth, but had two types of teeth. The teeth are so tiny; they range from 0.4 to 0.7mm wide. That's smaller than the tip of a toothpick!", explains Chapelle.

The conclusion of this research is that dinosaurs developed in the egg just like their reptilian relatives, whose embryonic developmental pattern hasn't changed in 200 million years. "It's incredible that in more than 250 million years of reptile evolution, the way the skull develops in the egg remains more or less the same. Goes to show - you don't mess with a good thing!", concludes Jonah Choiniere, professor at the University of Witwatersrand and also co-author of the study.

The team hopes to apply their method to other dinosaur embryos to estimate their level of development. They will be looking at the rest of the skeleton of the Massospondylus embryos to see if it also shares similarities in development with today's dinosaur relatives. The arms and legs of the Massospondylus embryos have already been used to show that hatchlings likely walked on two legs (see doi: 10.1111/pala.12451).

Main findings:
-end-
Scientists contacts:

Kimberley E.J. CHAPELLE
kimberley.chapelle@wits.ac.za; +27791457691

Vincent FERNANDEZ
v.fernandez@nhm.ac.uk; +33695576896

Jonah N. CHOINIERE
jonah.choiniere@wits.ac.za; +27799063169

Reference: Conserved in-ovo cranial ossification sequences of extant saurians allow estimation of embryonic dinosaur developmental stages, Scientific Reports
KIMBERLEY E. J. CHAPELLE1,2, VINCENT FERNANDEZ1,3,4, JONAH N. CHOINIERE1
1 Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
2School of Geosciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
3 European Synchrotron Radiation Facility, Grenoble, France
4 Imaging and Analyses Centre, Natural History Museum, London, United Kingdom

European Synchrotron Radiation Facility

Related Embryos Articles from Brightsurf:

Zebrafish embryos help prove what happens to nanoparticles in the blood
What happens to the nanoparticles when they are injected into the bloodstream, for example, to destroy solid tumours?

Artificial intelligence system developed to help better select embryos for implantation
Investigators from Brigham and Women's Hospital and Massachusetts General Hospital are developing an artificial intelligence system with the goal of improving IVF success by helping embryologists objectively select embryos most likely to result in a healthy birth.

Embryos taking shape via buckling
The embryo of an animal first looks like a hollow sphere.

Who's your daddy? Male seahorses transport nutrients to embryos
New research by Dr Camilla Whittington and her team at the University of Sydney has found male seahorses transport nutrients to their developing babies during pregnancy.

Study suggests embryos could be susceptible to coronavirus
Genes that are thought to play a role in how the SARS-CoV-2 virus infects our cells have been found to be active in embryos as early as during the second week of pregnancy, say scientists at the University of Cambridge and the California Institute of Technology (Caltech).

Spawning fish and embryos most vulnerable to climate's warming waters
Spawning fish and embryos are far more vulnerable to Earth's warming waters than fish in other life stages, according to a new study, which uniquely relates fish physiological tolerance to temperature across the lifecycles of nearly 700 fish species.

Animal embryos evolved before animals
A new study by an international team of researchers, led by scientists from the University of Bristol and Nanjing Institute of Geology and Palaeontology, has discovered that animal-like embryos evolved long before the first animals appear in the fossil record.

Choosing the best embryos
Struggling with infertility? You are not alone. Infertility affects one out of every six Canadian couples.

Turtle embryos play a role in determining their own sex
In certain turtle species, the temperature of the egg determines whether the offspring is female or male.

Early in vitro testing for adverse effects on embryos
ETH researchers have combined embryonic cells and liver cells in a new cell culture test.

Read More: Embryos News and Embryos Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.