Ear's inner secrets revealed with new technology

April 09, 2020

What does it actually look like deep inside our ears? This has been very difficult to study as the inner ear is protected by the hardest bone in the body. But with the help of synchrotron X-rays, it is now possible to depict details inside the ear three-dimensionally. Together with Canadian colleagues, researchers from Uppsala University have used the method to map the blood vessels of the inner ear.

The study, which was published in the scientific journal Scientific Reports, can provide an explanation for why it is so effective to treat deafness in people with cochlear implants (CI). This is a method that means that an electrode that electrically stimulates the auditory nerve is operated into the inner ear. To-date, around 500,000 people worldwide have been treated with this technique. In Uppsala, the operation is also performed on patients with severe hearing loss, but who can perceive sounds with lower frequencies.

"We need to get better at understanding the micro-anatomy of the human auditory organ and how electrodes operated in affect structures in the cochlea. It can lead to an improved electrode design and better hearing results. 3D reconstructions mean that we can study new surgical paths to the auditory nerve," says Helge Rask-Andersen, Senior Professor in Experimental Otology at the Department of Surgical Sciences.

To be able to study the blood vessels in the inner auditory organ, the researchers used the synchrotron system in Saskatoon, Saskatchewan, Canada. The system, which is one of eight in the world, is as large as a football pitch and accelerates particles with very high energy. This makes it possible to create pictures of the smallest parts of the inner ear. Through computer processing, the images can then be made three-dimensional.

The researchers hope the method in the future can contribute to new knowledge about diseases of the ear, such as Meniere's disease, sudden deafness and tinnitus, the causes of which are still largely unknown. But as yet, it is not possible to study living patients with this technique. The radiation is too strong.

"We study specimens from the deceased, meaning donated temporal bones. We hope that the technology can be modified in the future to achieve better resolution than today," says Helge Rask-Andersen.
-end-


Uppsala University

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.