Nav: Home

Greenland ice sheet meltwater can flow in winter, too

April 09, 2020

Liquid meltwater can sometimes flow deep below the Greenland Ice Sheet in winter, not just in the summer, according to CIRES-led work published in the AGU journal Geophysical Research Letters today. That finding means that scientists seeking to understand sea-level rise and the future of the Greenland Ice Sheet need to collect data during the dark Arctic winter with scant hours of daylight and temperatures that dip below -40 degrees.

"This observation raises questions for the Greenland research community, and motivates the need for future work on wintertime hydrology in Greenland," said lead author Lincoln Pitcher, a Visiting Fellow at CIRES, part of the University of Colorado Boulder. Pitcher began this work while he was a graduate student at the University of California Los Angeles, and his co-authors are from seven different states and Denmark.

When evidence suggested that some of Greenland's glaciers were storing meltwater through the winter, Pitcher set out for southwest Greenland to see if any of this meltwater was also leaving the ice sheet during winter. In February 2015, he and his colleague Colin Gleason of the University of Massachusetts at Amherst dragged a ground-penetrating radar across frozen rivers downstream of the edge of the ice sheet and drilled boreholes to see if any water was leaving the ice sheet and flowing beneath river ice. They surveyed rivers draining five Greenland Ice Sheet outlet glaciers and discovered meltwater flowing at just one site, the Isortoq River. In summertime, the Isotoq drains meltwater from the terminus of the Isunguata Sermia outlet glacier. In winter, the river appears frozen, but Pitcher and Gleason found slowly flowing liquid water there.

It was "a trickle, not a torrent," Pitcher said, and the water was flowing below half a meter of ice while temperatures were well below zero. Pitcher and Gleason collected water samples and geochemical analysis indicated that it had come from under the ice sheet itself.

The team concluded that it is possible the bed of the Greenland Ice Sheet can stay wet and drain small amounts of water year-round. This finding is important for understanding how meltwater from the ice surface moves through the ice sheet, is retained, refreezes and/or ultimately drains into rivers and/or the global ocean.

It is often assumed that Greenland's drainage system lies dormant during winter. Pitcher's team's findings highlight a growing need for year-round Arctic hydrologic investigations, not just in summer.
-end-


University of Colorado at Boulder

Related Ice Sheet Articles:

Greenland ice sheet shows losses in 2019
The Greenland Ice Sheet recorded a new record loss of mass in 2019.
Warming Greenland ice sheet passes point of no return
Nearly 40 years of satellite data from Greenland shows that glaciers on the island have shrunk so much that even if global warming were to stop today, the ice sheet would continue shrinking.
Greenland ice sheet meltwater can flow in winter, too
Liquid meltwater can sometimes flow deep below the Greenland Ice Sheet in winter, not just in the summer, according to CIRES-led work published in the AGU journal Geophysical Research Letters today.
Ice sheet melting: Estimates still uncertain, experts warn
Estimates used by climate scientists to predict the rate at which the world's ice sheets will melt are still uncertain despite advancements in technology, new research shows.
Thousands of meltwater lakes mapped on the east Antarctic ice sheet
The number of meltwater lakes on the surface of the East Antarctic Ice Sheet is more significant than previously thought, according to new research.
Researchers discover ice is sliding toward edges off Greenland Ice Sheet
They found that ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.
A clearer picture of global ice sheet mass
Fluctuations in the masses of the world's largest ice sheets carry important consequences for future sea level rise, but understanding the complicated interplay of atmospheric conditions, snowfall input and melting processes has never been easy to measure due to the sheer size and remoteness inherent to glacial landscapes.
Researchers discover more than 50 lakes beneath the Greenland Ice Sheet
Researchers have discovered 56 previously uncharted subglacial lakes beneath the Greenland Ice Sheet bringing the total known number of lakes to 60.
Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.
Novel hypothesis goes underground to predict future of Greenland ice sheet
The Greenland ice sheet melted a little more easily in the past than it does today because of geological changes, and most of Greenland's ice can be saved from melting if warming is controlled, says a team of Penn State researchers.
More Ice Sheet News and Ice Sheet Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.