Making sense of scents: 3D videos reveal how the nose detects odor combinations

April 09, 2020

NEW YORK -- Every moment of the day we are surrounded by smells. Odors can bring back memories, or quickly warn us that food has gone bad. But how does our brain identify so many different odors? And how easily can we untangle the ingredients of a mixture of odors? In a new study in mice published today in Science, Columbia scientists have taken an important step toward answering these questions, and the secret lies inside the nose.

"From garbage to cologne, the scents we encounter every day are comprised of hundreds or even thousands of individual odors," said Stuart Firestein, PhD, a Columbia professor of biological sciences and the co-senior author of today's study. "Your morning cup of coffee can contain more than 800 different types of odor molecules. Although much work has been done to understand how the nose and brain work together to identify individual odors, scientists have long struggled to explain how this system works when multiple odors are mixed together."

Using a cutting-edge 3D imaging method called SCAPE microscopy, the Columbia team monitored how thousands of different cells in the nose of a mouse responded to different odors -- and mixtures of those odors. They found that the information that the nose sends to the brain about a mixture of scents is more than just the sum of its parts.

The cells in the nose that detect smells each have one of a wide range of different sensors, or receptors; humans, for example have up to 400 different types of these receptors. For a pure, single odor, only the cells whose receptors are sensitive to that odor will become active, sending a code to the brain that it can identify as that odor. But for more complex mixtures of odors, this code would become increasingly complex to interpret.

The researchers expected to see that the cells activated by mixtures of odors would be equivalent to adding together responses to individual odors. In fact, they found that in some cases an odor can actually turn off a cell's response to another odor in a mixture; in other cases, a first odor could amplify a cell's response to a second odor.

Although we often perceive one odor dominating another, it was previously assumed that this processing occurred in the brain. These results show that signals being sent to the brain get shaped by these interactions within the nose.

The team's data challenged the traditional view that the brain makes sense of a mixture of scents by figuring out all of the individual components. It confirmed what perfumers have long known: combining different scents can create a certain experience on its own, essentially becoming an entirely new scent that can provide a completely different experience.

"We were excited to find that these changes in the code happened in the nose, before signals even get to the brain," said Lu Xu, a doctoral candidate in the Firestein lab and the co-first author of today's study. "We think that these effects could help us to detect and identify a much larger range of odors and mixtures than a simple additive code could convey."

To reveal these inner workings of the olfactory system, the researchers harnessed the power of SCAPE microscopy, a technique developed by Elizabeth Hillman, PhD, a Zuckerman Institute principal investigator and the co-senior author of today's Science paper. SCAPE microscopy creates high-speed, 3D images of living tissues in real time. It sweeps an angled sheet of light back and forth to create high-speed 3D movies of living cells and tissues in action.

The Firestein and Hillman labs customized SCAPE to illuminate and view tissues in the noses of mice. The researchers examined neuronal cells within the animals' noses that were labeled with fluorescence that flashed under the microscope when these cells were activated. They then exposed the animals' nasal tissues to a range of different scent combinations: one with a woody bouquet, and the other a mix of almond, floral and citrus scents.

"SCAPE allowed us to simultaneously analyze the activity in any of the tens of thousands of single cells over long periods of time," said Wenze Li, PhD, a postdoctoral research scientist in the Hillman lab and the paper's co-first author. "Using conventional microscopes, we could only image a few hundred cells in a thin layer for a short time. SCAPE made it possible to image many more cells within the intact 3D nasal structures without damaging the tissue. This enabled us to track each cell's response over time to a long series of different odor combinations."

To process the immense amount of data collected -- more than 300 gigabytes per tissue sample -- the team had to build their own powerful data processing server, and worked with algorithms developed by Columbia's Department of Statistics and the Simons Foundation.

For almost twenty years, scent experts have known that certain smells can mask or even enhance others. With today's study, the researchers uncovered a potential mechanism for this phenomenon.

"Our results showed that scent molecules can both activate and deactivate receptors, masking other scents not by overpowering them, but by changing the way cells respond to them," said Dr. Hillman, who is professor of biomedical engineering at Columbia School of Engineering and Applied Science. "These findings could actually be very useful, for example to make better air fresheners that actually block out any unwanted smells."

"These results are also exciting because we didn't expect that this kind of receptor could be enhanced or suppressed in this way," added Dr. Firestein. "Being able to change the way a receptor responds to one substance is very important for drug development. Our studies in the nose actually shed new light on possible ways to modulate the response of other cell types that might be involved in disease."

"This study was a true marriage of the expertise of two different labs, with state-of-the-art microscopy technology and big-data analysis," added Dr. Hillman, who is also a professor of radiology at Columbia's Vagelos College of Physicians and Surgeons. Dr. Hillman credits funding and encouragement from the NIH BRAIN Initiative for making this parallel science and technology work possible. "We discovered something that was almost impossible to see before, because we had a new way to see it."
-end-
This paper is titled "Widespread receptor driven modulation in peripheral olfactory coding." Additional contributors include Venkatakaushik Voleti and Dong-Jing Zou.

This research was supported by the National Institutes of Health (2 R01 DC013553), NIH BRAIN Initiative (U01NS09429, UF1NS108213), Firmenich (3000615937), National Cancer Institute (U01CA236554), Department of Defense (MURI W911NF-12-24 1-0594), the Simons Foundation Collaboration on the Global Brain, the Kavli Institute for Brain Science and the National Science Foundation (IGERT and CAREER CBET-0954796).

Competing Interests: Elizabeth Hillman, Wenze Li and Venkatakaushik Voleti declare a potential financial conflict of interest relating of the licensing of SCAPE microscopy intellectual property to Leica Microsystems for commercial development. Stuart Firestein, Elizabeth Hillman, Venkatakaushik Voleti and Wenze Li receive funds for advising Firmenich SA in work related to that presented here.

Columbia University's Mortimer B. Zuckerman Mind Brain Behavior Institute brings together a group of world-class scientists and scholars to pursue the most urgent and exciting challenge of our time: understanding the brain and mind. A deeper understanding of the brain promises to transform human health and society. From effective treatments for disorders like Alzheimer's, Parkinson's, depression and autism to advances in fields as fundamental as computer science, economics, law, the arts and social policy, the potential for humanity is staggering. To learn more, visit: zuckermaninstitute.columbia.edu.

The Zuckerman Institute at Columbia University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.