World's most complex microparticle: A synthetic that outdoes nature's intricacy

April 09, 2020

ANN ARBOR--Synthetic microparticles more intricate than some of the most complicated ones found in nature have been produced by a University of Michigan-led international team. They also investigated how that intricacy arises and devised a way to measure it.

The findings pave the way for more stable fluid-and-particle mixes, such as paints, and new ways to twist light--a prerequisite for holographic projectors.

The particles are composed of twisted spikes arranged into a ball a few microns, or millionths of a millimeter, across.

Biology is a great creator of complexity on the nano- and microscales, with spiky structures such as plant pollen, immune cells and some viruses. Among the most complex natural particles on the scale of the new synthetic particles are spiky coccolithophores. A few microns in diameter, this type of algae is known for building intricate limestone shells around themselves. To better understand the rules that govern how particles like these grow, scientists and engineers try to make them in the lab. But until now, there was no formalized way to measure the complexity of the results.

"Numbers rule the world, and being able to rigorously describe spiky shapes and put a number on complexity enables us to use new tools like artificial intelligence and machine learning in designing nanoparticles," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering at U-M, who led the project.

The team--which includes researchers at the Federal University of São Carlos and the University of São Paulo in Brazil, as well as the California Institute of Technology and the University of Pennsylvania--used the new framework to demonstrate that their particles were even more complicated than coccolithophores.

The computational arm of the team, led by André Farias de Moura, professor of chemistry at the Federal University, investigated the quantum properties of the particles and the forces acting on the nanoscale building blocks.

One of the key players in producing complexity can be chirality--in this context, the tendency to follow a clockwise or counterclockwise twist. They introduced chirality by coating nanoscale gold sulfide sheets, which served as their particle building blocks, with an amino acid called cysteine. Cysteine comes in two mirror-image forms, one driving the gold sheets to stack with a clockwise twist, and the other tending toward a counterclockwise twist. In the case of the most complex particle, a spiky ball with twisted spines, each gold sheet was coated with the same form of cysteine.

The team also controlled other interactions. By using flat nanoparticles, they created spikes that were flat rather than round. They also used electrically charged molecules to ensure that the nanoscale components built themselves into larger particles, bigger than a few hundred nanometers across, due to repulsion.

"These laws often conflict with each other, and the complexity emerges because these communities of nanoparticles have to satisfy all of them," said Kotov, professor of materials science and engineering and macromolecular science and engineering.

And that complexity can be useful. Nanoscale spikes on particles like pollen keep them from clumping together. Similarly, the spikes on these particles made by the research team help them disperse in virtually any liquid, a property that is useful for stabilizing solid/liquid mixtures such as paints.

The microparticles with twisted spikes also take in UV light and emit twisted--or circularly polarized--visible light in response.

"The understanding of these emissions was one of the hardest parts of the investigation," de Moura said.

From the results of the experiments and simulations, it appears that UV energy was absorbed into the hearts of the particles and transformed through quantum mechanical interactions, becoming circularly polarized visible light by the time it left through the curved spikes.

The researchers believe that the tactics they have uncovered can help scientists engineer particles that improve biosensors, electronics and the efficiency of chemical reactions.
-end-
The study is titled, "Emergence of Complexity in Hierarchically Organized Chiral Particles," and is published in the journal Science. The research is funded by the U.S. Department of Defense, National Science Foundation and Brazilian funding agencies CAPES, CNPq and FAPESP. The particles were studied at the

University of Michigan

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.