Construction of sintering resistant Pt based catalyst based on 'composite energy well' model

April 09, 2020

Nano-catalysts usually have higher catalytic activity than traditional bulk catalysts. And it is widely acknowledged that the smaller the particle size of the active component is, the higher the activity would be. However, the active component with small size tends to agglomerate or further grow into large particles. Many reaction processes, such as hydrocarbon cracking and combustion, methane dry/wet reforming and automobile exhaust gas purification, have to be operated at very high temperatures, it will lead to the decreasing of activity and product selectivity due to sintering at high temperatures, ultimately limits the practical application of nano-catalysts. Many researchers believe that the sintering of nanoparticles involves two processes: one is the ripening process, single atom or molecular species move from one particle to another; the other is the migration process, whole particles grow into large particles after migration and aggregation. Because the ripening process can hardly be avoided at high temperature, the current strategy to improve the stability of nano-catalysts is to inhibit the migration of nanoparticles on the basis of "confinement effect" or to construct a "migration barrier".

Recently, Pt/CeO2/NiAl2O4/Al2O3@SiO2 model catalyst, based on the "composite energy trap" model, was developed by the State Key Laboratory of Rare Earth Resource Utilization of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, which can effectively inhibit the migration and agglomeration of loaded nanoparticles. The model catalyst still remains high activity after aging at 1000 ?. The results of DFT indicate that the higher stability of the model catalyst should be attributed to the existence of two kinds of "confinement effect" in its structure, the "composite energy well" model is also suitable for the research and development of other supported catalysts. The first authors of this paper are Jingwei Li and Kai Li, and the correspondent authors are associate professor Yibo Zhang and professor Xiangguang Yang.
This research was funded by the National Key Research and Development Program of China (2016YFC0204301), National Nature Science Foundation of China (21872133 and 21273221) and Youth Innovation Promotion Association of Chinese Academy of Science (2018263)

See the article: Li J, Li K, Sun L, Zhang Z, Wu Z, Zhang Y, Yang X. Sinter-resistant and high-efficient Pt/CeO2/NiAl2O4/Al2O3@SiO2 model catalyst with "composite energy trap". Sci. China Chem., 63, 519-525(2020), DOI: 10.1007/s11426-019-9678-5.

Science China Press

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to