For the first time the LHC reaches temperatures colder than outer space

April 10, 2007

Geneva, 10 April 2007. The first sector of CERN* 's Large Hadron Collider (LHC) to be cooled down has reached a temperature of 1.9 K (-271°C), colder than deep outer space! Although just one-eighth of the LHC ring, this sector is the world's largest superconducting installation. The entire 27-kilometre LHC ring needs to be cooled down to this temperature in order for the superconducting magnets that guide and focus the proton beams to remain in a superconductive state. Such a state allows the current to flow without resistance, creating a dense, powerful magnetic field in relatively small magnets. Guiding the two proton beams as they travel at nearly the speed of light, curving around the accelerator ring and focusing them at the collision points is no easy task. A total of 1650 main magnets need to be operated in a superconductive state, which presents a huge technical challenge. "This is the first major step in the technical validation of a full-scale portion of the LHC," explained LHC project leader, Lyn Evans.

There are three parts to the cool down process, with many tests and intense checking in between. During the first phase, a sector is cooled down to 80 K, slightly above the temperature of liquid nitrogen. At this temperature the material will have seen 90% of its final thermal contraction, a 3 millimetre per metre shrinkage of the steel structures. Each of the eight sectors is about 3.3 kilometres long, which means shrinkage of 9.9 metres. To deal with this amount of shrinkage, specific places have been designed to compensate, including expansion bellows for piping elements and cabling with some slack. Tests are done to make sure no hardware breaks as the machinery is cooled.

The second phase brings the sector to 4.5 K using enormous refrigerators. Each sector has its own refrigerator and each of the main magnets is filled with liquid helium, the coolant of choice for the LHC because it is the only element to be in a liquid state at such a low temperature.

The final phase requires a sophisticated pumping system to help bring down the pressure on the boiling Helium and cool the magnets to 1.9 K. To achieve a pressure of 15 millibars, the system uses both hydrodynamic centrifugal compressors operating at low temperature and positive-displacement compressors operating at room temperature. Cooling down to 1.9 K provides greater efficiency for the superconducting material and for the helium's cooling capacity. At this low temperature helium becomes superfluid, flowing with virtually no viscosity and allowing greater heat transfer capacity.

"It's exciting because for more than ten years people have been designing, building and testing separately each part of this sector separately and now we have a chance to test it all together for the first time," said Serge Claudet, head of the Cryogenic Operation Team. For more information and to see regular updates, see http://lhc.web.cern.ch/lhc/.

The conditions are now established to allow testing of all magnets in this sector to their ultimate performance.
-end-
*CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

CERN

Related Large Hadron Collider Articles from Brightsurf:

Cosmic tango between the very small and the very large
A new study using the theory of quantum loop cosmology accounts for two major mysteries about the large-scale structure of our universe.

Profits of large pharmaceutical companies compared to other large public companies
Data from annual financial reports were used to compare the profitability of 35 large pharmaceutical companies with 357 companies in the S&P 500 Index from 2000 to 2018.

Near misses at Large Hadron Collider shed light on the onset of gluon-dominated protons
New findings from University of Kansas researchers center on work at the Large Hadron Collider to better understand the behavior of gluons.

Springer Nature publishes study for a CERN next generation circular collider
Back in January, CERN released a conceptual report outlining preliminary designs for a Future Circular Collider (FCC), which if built, would have the potential to be the most powerful particle collider the world over.

Large cells for tiny leaves
Scientists identify protein that controls leaf growth and shape.

NYU Physicists develop new techniques to enhance data analysis for large hadron collider
NYU physicists have created new techniques that deploy machine learning as a means to significantly improve data analysis for the Large Hadron Collider (LHC), the world's most powerful particle accelerator.

Mini antimatter accelerator could rival the likes of the Large Hadron Collider
Researchers have found a way to accelerate antimatter in a 1000x smaller space than current accelerators, boosting the science of exotic particles.

A domestic electron ion collider would unlock scientific mysteries of atomic nuclei
The science questions that could be answered by an electron ion collider (EIC) -- a very large-scale particle accelerator - are significant to advancing our understanding of the atomic nuclei that make up all visible matter in the universe, says a new report by the National Academies of Sciences, Engineering, and Medicine.

How large can a tsunami be in the Caribbean?
The 2004 Indian Ocean tsunami has researchers reevaluating whether a magnitude 9.0 megathrust earthquake and resulting tsunami might also be a likely risk for the Caribbean region, seismologists reported at the SSA 2018 Annual Meeting.

Meet the 'odderon': Large Hadron Collider experiment shows potential evidence of quasiparticle sought for decades
A team of high-energy experimental particle physicists, including several from the University of Kansas, has uncovered possible evidence of a subatomic quasiparticle dubbed an

Read More: Large Hadron Collider News and Large Hadron Collider Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.