Antibiotic stress, genetic response and altered permeability of E. coli

April 10, 2007

Bacterial infections caused by Gram-negative bacteria such as Escherichia coli are frequently resistant to two or more antibiotics (multi-drug resistant). Because introduction of new antibiotics will not eliminate the problem of multi-drug resistance (mdr), mdr type infections constitute a major health threat, especially to patients that acquire such infections nosocomially. The manner by which mdr develops has become an area of intense research and the recent investigations conducted by an international group consisting of American, Portuguese and French scientists have identified the genetic sequence of events that lead to mdr phenotypes of Gram-negative bacteria.

The study, entitled "Antibiotic Stress, Genetic Response and Altered Permeability of E. coli," will be published the 11th April issue of the international, peer-reviewed, open-access online journal of the Public Library of Science, PLoS ONE.

Briefly, prolonged exposure to increasing concentrations of tetracycline cause increased sequential activity of regulatory genes which promote over-expression of genes that code for as many as 9 transporter proteins of distinct efflux pumps which extrude unrelated antibiotics prior to their reaching their intended targets. Parallel to this genetic activity, whereas the level of outer membrane porin proteins Omp F and C decrease with increased antibiotic stress, the level of Omp X continues to increases dramatically. The decrease of Omp C and F appears to result from their being degraded by proteases inasmuch as the activity of genes that code for these proteins are also significantly elevated during prolonged antibiotic stress.

The authors of this study maintain that this is the first time that the response to prolonged exposure to increasing levels of antibiotic cause major changes in the permeability of the bacterium due to over-expression of efflux pumps and down-regulation of porins.
-end-
Disclaimer

The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Contact: Leonard Amaral
Email: LAmaral@ihmt.unl.pt

Citation: Viveiros M, Dupont M, Rodrigues L, Couto I, Davin-Regli A, et al (2007) Antibiotic Stress, Genetic Response and Altered Permeability of E. coli. PLoS ONE 2(4): e365. doi:10.1371/journal.pone.0000365

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.doi.org/10.1371/journal.pone.0000365

PRESS ONLY PREVIEW: http://www.plos.org/press/pone-02-04-amaral.pdf

PLOS

Related Antibiotics Articles from Brightsurf:

Insights in the search for new antibiotics
A collaborative research team from the University of Oklahoma, the Memorial Sloan Kettering Cancer Center and Merck & Co. published an opinion article in the journal, Nature Chemical Biology, that addresses the gap in the discovery of new antibiotics.

New tricks for old antibiotics
The study published in the journal Immunity reveals that tetracyclines (broad spectre antibiotics), by partially inhibiting cell mitochondria activity, induce a compensatory response on the organism that decreases tissue damage caused during infection.

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.

How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'

Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.

Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.

Read More: Antibiotics News and Antibiotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.