Nav: Home

Researchers develop mouse that could provide advance warning of next flu pandemic

April 10, 2017

Researchers in Germany have developed a transgenic mouse that could help scientists identify new influenza virus strains with the potential to cause a global pandemic. The mouse is described in a study, "In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein," that will be published April 10 in The Journal of Experimental Medicine.

Influenza A viruses can cause devastating pandemics when they are transmitted to humans from pigs, birds, or other animal species. To cross the species barrier and establish themselves in the human population, influenza strains must acquire mutations that allow them to evade components of the human immune system, including, perhaps, the innate immune protein MxA. This protein can protect cultured human cells from avian influenza viruses but is ineffective against strains that have acquired the ability to infect humans.

To investigate whether MxA provides a similar barrier to cross-species infection in vivo, Peter Staeheli and colleagues at the Institute of Virology, Medical Center University of Freiburg, created transgenic mice that express human, rather than mouse, MxA. Similar to the results obtained with cultured human cells, the transgenic mice were resistant to avian influenza viruses but susceptible to flu viruses of human origin.

MxA is thought to target influenza A by binding to the nucleoprotein that encapsulates the virus' genome, and mutations in this nucleoprotein have been linked to the virus' ability to infect human cells. Staeheli and colleagues found that an avian influenza virus engineered to contain these mutations was able to infect and cause disease in the transgenic mice expressing human MxA.

MxA is therefore a barrier against cross-species influenza A infection, but one that the virus can evade through a few mutations in its nucleoprotein. Staeheli and colleagues think that their transgenic mice could help monitor the potential dangers of emerging viral strains. "Our MxA-transgenic mouse can readily distinguish between MxA-sensitive influenza virus strains and virus strains that can evade MxA restriction and, consequently, possess a high pandemic potential in humans," Staeheli says. "Such analyses could complement current risk assessment strategies of emerging influenza viruses, including viral genome sequencing and screening for alterations in known viral virulence genes."
-end-
Deeg et al., 2017. J. Exp. Med.http://jem.rupress.org/cgi/doi/10.1084/jem.20161033?PR

About The Journal of Experimental Medicine

The Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM provides free online access to many article types from the date of publication and to all archival content. Established in 1896, JEM is published by The Rockefeller University Press. For more information, visit jem.org.

Visit our Newsroom"> and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed and @RockUPress.

Rockefeller University Press

Related Influenza Articles:

Birds become immune to influenza
An influenza infection in birds gives a good protection against other subtypes of the virus, like a natural vaccination, according to a new study.
Researchers shed new light on influenza detection
Notre Dame Researchers have discovered a way to make influenza visible to the naked eye, by engineering dye molecules to target a specific enzyme of the virus.
Maternal vaccination again influenza associated with protection for infants
How long does the protection from a mother's immunization against influenza during pregnancy last for infants after they are born?
Influenza in the tropics shows variable seasonality
Whilst countries in the tropics and subtropics exhibit diverse patterns of seasonal flu activity, they can be grouped into eight geographical zones to optimise vaccine formulation and delivery timing, according to a study published April 27, 2016 in the open-access journal PLOS ONE.
Influenza viruses can hide from the immune system
Influenza is able to mask itself, so that the virus is not initially detected by our immune system.
Using 'big data' to combat influenza
Team of scientists from the Icahn School of Medicine at Mount Sinai and Sanford Burnham Prebys Medical Discovery Institute among those who combined large genomic and proteomic datasets to identify novel host targets to treat flu.
Rapidly assessing the next influenza pandemic
Influenza pandemics are potentially the most serious natural catastrophes that affect the human population.
Early detection of highly pathogenic influenza viruses
Lack of appropriate drugs and vaccines during the influenza A virus pandemic in 2009, the recent Ebola epidemic in West Africa, as well as the ongoing Middle Eastern Respiratory Syndrome-Coronavirus outbreak demonstrates that the world is only insufficiently prepared for global attacks of emerging infectious diseases and that the handling of such threats remains a great challenge.
Study maps travel of H7 influenza genes
In a new bioinformatics analysis of the H7N9 influenza virus that has recently infected humans in China, researchers trace the separate phylogenetic histories of the virus's genes, giving a frightening new picture of viruses where the genes are traveling independently in the environment, across large geographic distances and between species, to form 'a new constellation of genes -- a new disease, based not only on H7, but other strains of influenza.'
Influenza A potentiates pneumococcal co-infection: New details emerge
Influenza infection can enhance the ability of the bacterium Streptococcus pneumoniae to cause ear and throat infections, according to research published ahead of print in the journal Infection and Immunity.

Related Influenza Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...