Nav: Home

Discovery of 'helical molecular glue'

April 10, 2017

The research group led by Professor Hideto Tsuji conducts basic and applied researches on biodegradable polymers derived from renewable resources such as corn or potato starch. The group mainly studies a typical biodegradable polymer poly(lactic acid). Poly(lactic acid) is hydrolyzed and degraded in the human body and the resulting lactic acid is metabolized without causing adverse effects to the body. Because of this advantage, poly(lactic acid) is used in medical applications as a scaffold material for tissue regeneration and also in environmental applications.

Poly(lactic acid) contains an asymmetric carbon and therefore occurs either as the L- or D-enantiomer, namely poly(L-lactic acid) or poly(D-lactic acid) (Fig. 1). Since the interaction between different enantiomers (i.e. between L and D) is stronger than that between the same enantiomers (e.g. between D and D), blending the two enantiomers results in co-crystallization of an L-enantiomer and a D-enantiomer (this phenomenon is also called stereocomplex formation). The stereocomplex has a higher melting point, better mechanical properties, and higher heat resistance and hydrolysis resistance than those of their constituent enantiomers, and therefore the stereocomplex can have wider applications than those of conventional biodegradable materials. Under these circumstances, stereocomplex formation between poly(lactic acid) has been actively researched in recent years.

L-poly(lactic acid) is counterclockwise-helical, and D-poly(lactic acid) is clockwise-helical. Therefore, the fact that L-poly(lactic acid) and D-poly(lactic acid) form a stereocomplex together indicates that a counterclockwise-helical molecule and a clockwise-helical molecule are strongly attracted to each other. Tsuji et al. have also discovered that blending the L- and D-enantiomers of poly(2-hydroxybutanoic acid) (Fig. 1) (a poly(lactic acid) with its methyl group replaced by an ethyl group) results in stereocomplex formation as well. In addition, there are reports on the same phenomena occurring to poly(2-hydroxy-3-methylbutanoic acid) (Fig. 1) (a poly(lactic acid) with its methyl group replaced by an isopropyl group) and occurring even between poly(lactic acid) with different side chains (for example, between L-poly(lactic acid) and D-poly(2-hydroxybutanoic acid)). All these phenomena indicate the presence of strong interaction between a counterclockwise-helical molecule and a clockwise-helical molecule.

This time, Tsuji et al. have found the action of a counterclockwise-helical molecule to glue two structurally-different clockwise-helical molecules that do not bind to each other otherwise (Fig. 2). This finding indicates that a clockwise-helical molecule would also have the action to glue two structurally-different counterclockwise-helical molecules that do not bind to each other otherwise. Through experiment using D-poly(lactic acid), L-poly(2-hydroxybutanoic acid), and D-poly(2-hydroxy-3-methylbutanoic acid), Tsuji et al. have discovered for the first time worldwide that counterclockwise-helical L-poly(2-hydroxybutanoic acid) acts as "helical molecular glue" to glue clockwise-helical D-poly(lactic acid) and clockwise-helical D-poly(2-hydroxy-3-methylbutanoic acid) and thereby co-crystallizes these two D-molecules despite that these two do not usually co-crystalize. This finding has opened the door to binding various polymers that are coiled in the same direction. Now that the degree of freedom in polymer combination has increased, development of new polymer materials with various properties has become possible.
-end-
Funding Agencies:

JSPS Grant-in-Aid for Scientific Research No. 16K05912

MEXT (Ministry of Education, Culture, Sports, Science and Technology) Grant-in-Aid for Scientific Research No. 24108005

Reference:

Hideto Tsuji, Soma Noda, Takayuki Kimura, Tadashi Sobue, and Yuki Arakawa, Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers, Scientific Reports, vol. 7, Article number 45170 (2017).

To read this paper, go online at http://www.nature.com/articles/srep45170 (open access)

Toyohashi University of Technology

Related Polymers Articles:

Oyster shells inspire new method to make superstrong, flexible polymers
Columbia Engineers developed a method inspired by the nacre of oyster shells, a composite material with extraordinary mechanical properties, including great strength and resilience.
The brighter side of twisted polymers
A strategy to produce highly fluorescent nanoparticles through careful molecular design of conjugated polymers has been developed by KAUST researchers.
New strategy produces stronger polymers
MIT researchers have found a way to reduce the number of loops in polymer networks such as gels, plastics, and rubber.
Team highlights work on tuning block polymers for nanostructured systems
High-performance materials are enabling major advances in a wide range of applications from energy generation and digital information storage to disease screening and medical devices.
Estimating the glass transition temperature for polymers in 'confined geometries'
Polystyrene has a glass transition temperature of about 100 C -- at room temperature it behaves like a solid material.
Rapid Imaging of Polymers Could Lead to Better Bioimaging
A recent study by researchers at the Beckman Institute for Advanced Science and Technology at the University of Illinois identifies a method of Quantum Cascade Laser-based (QCL) infrared spectroscopic imaging that provides a more rapid method than conventional Fourier transform infrared imaging (FT-IR) to examine spherulites, large semicrystalline polymer samples, in order to identify chemical and structural properties.
Macromolecules: Light to design precision polymers
Chemists of Karlsruhe Institute of Technology have succeeded in specifically controlling the setup of precision polymers by light-induced chemical reactions.
International engineering team develop self-powered mobile polymers
n international group involving Inha University, University of Pittsburgh and the Air Force Research Laboratory has built upon their previous research and identified new materials that directly convert ultraviolet light into motion without the need for electronics or other traditional methods.
'Bottlebrush' polymers make dielectric elastomers increasingly viable for use in devices
A multi-institutional research team has developed a new electroactive polymer material that can change shape and size when exposed to a relatively small electric field.
NIST-made 'sun and rain' used to study nanoparticle release from polymers
In a recently published paper, researchers from the National Institute of Standards and Technology (NIST) describe how they subjected a commercial nanoparticle-infused coating to NIST-developed methods for accelerating the effects of weathering from ultraviolet (UV) radiation and simulated washings of rainwater.

Related Polymers Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...