Diamonds coupled using quantum physics

April 10, 2017

Diamonds with minute flaws could play a crucial role in the future of quantum technology. For some time now, researchers at TU Wien have been studying the quantum properties of such diamonds, but only now have they succeeded in coupling the specific defects in two such diamonds with one another. This is an important prerequisite for the development of new applications, such as highly sensitive sensors and switches for quantum computers. The results of the research will now be published in the journal Physical Review Letters.

In search of a suitable quantum system

"Unfortunately, quantum states are very fragile and decay very quickly", explains Johannes Majer, head of the hybrid quantum research group, based at the Institute of Atomic and Subatomic Physics at TU Wien. For this reason, in-depth research is being carried out with the aim of finding quantum systems that can be used for technical applications. Even though there are some promising candidates with particular advantages, up until now there has been no system that fulfils all of the requirements simultaneously.

"Diamonds with very specific defects are one potential candidate for making quantum computers a reality", says Johannes Majer. A pure diamond is made up solely of carbon atoms. In some diamonds, however, there can be points where there is a nitrogen atom instead of a carbon atom and neighbouring this, within the atomic structure of the diamond, there is an anomaly where there is no atom at all - this is referred to as a 'vacancy'. This defect, consisting of the nitrogen atom and vacancy, forms a quantum system with a very long-lasting state, making diamonds with these particular flaws ideally suited to quantum experiments.

It all depends on the coupling

One important pre-requisite for many quantum technological applications is indeed the ability to couple such quantum systems together, which up until now has scarcely been possible for diamond systems. "The interaction between two such nitrogen-vacancy defects is extremely weak and only has a reach of around 10 nanometres", says Majer.

However, this feat has now been achieved; albeit with the help of a superconducting quantum chip that produces microwave radiation. For a number of years now, the team at TU Wien has been investigating how diamonds can be manipulated with the help of microwaves: "billions of nitrogen-vacancy defects in diamonds are coupled collectively with a microwave field", says Majer. "In this way, the quantum state of the diamonds can be manipulated and read out."

Now, the team has succeeded in taking the next step: they were able to couple two different diamonds, one at each end of the chip, thus producing an interaction between the two diamonds. "This interaction is mediated by the microwave resonator in the chip in between; here, the resonator plays a similar role to that of a data bus in a regular computer", says Johannes Majer.

The coupling between the two diamonds can be switched on and off selectively: "the two diamonds are rotated against each other at a certain angle", reports Thomas Astner, the lead author of the current work. "Additionally, a magnetic field is applied, with the direction playing a decisive role: if both diamonds are aligned at the same angle within the magnetic field, then they can be coupled using quantum physics. With other magnetic field directions, it is possible to investigate the individual diamonds without coupling". The first steps in the experiment were taken by Noomi Peterschofsky as part of her undergraduate thesis. Thomas Astner and Stefan Nevlacsil subsequently succeeded in demonstrating the coupling of the diamonds in an experiment as part of their Master's thesis.
Original publication: T. Astner et al., Phys. Rev. Lett. 118, 140502

Photo download

Further information:

Dr. Johannes Majer
Institute of Atomic and Subatomic Physics
TU Wien
Stadionalle 2, 1020 Vienna
T: +43-699-10253808

Vienna University of Technology

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to