Nav: Home

North America's freshwater lakes are getting saltier

April 10, 2017

(Millbrook, NY) North America's freshwater lakes are getting saltier due to development and exposure to road salt. A study of 371 lakes published today in the Proceedings of the National Academy of Sciences reports that many Midwestern and Northeastern lakes are experiencing increasing chloride trends, with some 44% of lakes sampled in these regions undergoing long-term salinization.

The study is the first large-scale analysis of chloride trends in freshwater lakes. It was conducted by a team of fifteen researchers as part of the Global Lake Ecological Observatory Network (GLEON) Fellowship Program, an initiative that seeks to train the next generation of freshwater scientists and practitioners.

Lead author Hilary Dugan, a limnologist at the University of Wisconsin-Madison and former Cary Institute of Ecosystem Studies Postdoctoral Fellow, explains, "We compiled long-term data, and compared chloride concentrations in North American lakes and reservoirs to climate and land use patterns, with the goal of revealing whether, how, and why salinization is changing across broad geographic scales. The picture is sobering. For lakes, small amounts of shoreline development translate into big salinization risks."

Chloride trends in 371 freshwater lakes were analyzed. Each lake was larger than 4 hectares in size with at least 10 years of recorded chloride data. The majority of the lakes (284) were located in a North American Lakes Region that includes Connecticut, Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New York, Ontario, Rhode Island, Vermont, and Wisconsin.

Since the 1940s, the use of road salt to keep winter roads navigable has been escalating. Each year, some 23 million metric tons of sodium chloride-based deicer is applied to North America's roads to melt away snow and ice. Much of this road salt washes into nearby water bodies, where it is recognized as a major source of chloride pollution to groundwater, streams, rivers, and lakes.

To gauge road salt exposure, the research team assessed road density and land cover within a 100- to 1500-meter buffer around each of the 371 study lakes. Roadways and impervious surfaces such as parking lots and sidewalks are reliable proxies for road salt application because as developed areas, they are susceptible to high levels of salting and runoff.

Results were clear: roads and other impervious surfaces within 500 meters of a lake's shoreline were a strong predictor of elevated chloride concentrations. In the North American Lakes Region, 70% (94 out of 134) of lakes with more than 1% impervious land cover in their 500-meter buffer zone had increasing chloride trends. When results are extrapolated to all lakes in the North American Lakes Region, some 7,770 lakes may be at risk of rising salinity.

If current salinization trends continue, many North American lakes will surpass EPA-recommended chloride levels in 50 years. Within this study, 14 North American Lakes Region lakes are expected to exceed the EPA's aquatic life criterion concentration of 230 mg/L by 2050, and 47 are on track to reach chloride concentrations of 100 mg/L during the same time period.

Co-author Sarah Bartlett, a graduate student at the University of Wisconsin-Milwaukee, explains, "These results are likely an underestimation of the salinization problem, as a number of regions with heavy road salt application, such as Quebec or the Maritime Provinces of Canada, had no long-term lake data available." Co-author Flora Krivak-Tetley, a graduate student at Dartmouth College, added, "It is also extremely difficult to obtain rates of road salt application both through time and across regions. Better application data would allow us to more accurately forecast ecosystem health."

In lakes, elevated chloride levels have been shown to alter the composition of fish, invertebrates, and the plankton that form the base of the aquatic food web. Aquatic species richness and abundance can decline, and in extreme cases salinization can prevent lakes from mixing - causing low oxygen conditions that smother aquatic life and reduce water quality.

The study's authors recommend that best lake management practices recognize that shoreline management extends well beyond a lake's perimeter. While many states and municipalities acknowledge the importance of shoreline management, they note that zoning regulations are often only enforced within 300 meters, and many lakes lack the monitoring programs needed to adequately track lake health.

Coauthor and Fellowship advisor Kathleen Weathers, an ecosystem scientist at the Cary Institute of Ecosystem Studies and co-chair of GLEON, comments, "In the North American Lakes Region - where road salt is a reality - roads and other impervious surfaces within 500 meters of a lake's shoreline are a recipe for salinization. We need to manage and monitor lakes to ensure they are kept 'fresh' and protect the myriad of services they provide, from fisheries and recreation to drinking water supplies."

A lake's chloride status may also provide a window into the ecological health of its watershed. Co-author Samantha Burke, a graduate student at the University of Waterloo, adds, "Unlike flowing streams and rivers, water resides in lakes for long periods of time. This makes them vulnerable to pollution from their watersheds and good early warning indicators of environmental disruption."
-end-
Funding for this study was provided, in part, by the National Science Foundation. It is a product of the GLEON Fellowship Program, an intensive 18-month graduate opportunity that trains participants to analyze large and diverse data sets, collaborate on international teams, and communicate cutting-edge freshwater science to diverse audiences. Learn more at: http://fellowship.gleon.org

Additional coauthors included: Jonathan Doubek (Virginia Polytechnic Institute and State University), Nicolas Skaff (Michigan State University), Jamie Summers (Queen's University), Kait Farrell (University of Georgia), Ian McCollough (University of California), Ana Morales-Williams (University of Vermont), Derek Roberts (University of California), Facundo Scordo (Universidad Nacional del Sur), Zutao Ouyang (Michigan State University), and Paul Hansen (University of Wisconsin).

The Cary Institute of Ecosystem Studies is one of the world's leading independent environmental research organizations. Areas of expertise include disease ecology, forest and freshwater health, climate change, urban ecology, and invasive species. Since 1983, Cary Institute scientists have produced the unbiased research needed to inform effective management and policy decisions.

The Global Lakes Ecological Observatory Network is a grassroots network of more than 600 members in 50+ countries conducting innovative science to understand, predict, and communicate the role and response of lakes in a changing global environment. GLEON's international team of researchers, managers, and citizens collect, share, and interpret large datasets, with the goal of advancing lake ecology and informing sound freshwater stewardship.

Cary Institute of Ecosystem Studies

Related Road Salt Articles:

A recipe for concrete that can withstand road salt deterioration
Engineers have known for some time that calcium chloride salt, commonly used as deicer, reacts with the calcium hydroxide in concrete to form a chemical byproduct that causes roadways to crumble.
Road salt alternatives alter aquatic ecosystems
Organic additives found in road salt alternatives -- such as those used in the commercial products GeoMelt and Magic Salt -- act as a fertilizer to aquatic ecosystems, promoting the growth of algae and organisms that eat algae, according to new research published today in the Journal of Applied Ecology.
Zooplankton rapidly evolve tolerance to road salt
A common species of zooplankton -- the smallest animals in the freshwater food web -- can evolve genetic tolerance to moderate levels of road salt in as little as two and a half months, according to new research published online today in the journal Environmental Pollution.
Exploring how rice could survive salt stress
Real-time genetic detailing of rice plants highlights the roles of different loci in response to salt stress during growth.
Road salt can change sex ratios in frog populations, study says
Exposure to common road salt and leaf litter can affect the sex ratios in frog populations and, in some cases, even the size of individual frogs, according to a new study by scientists at Yale and Rensselaer Polytechnic Institute.
Too much salt could potentially contribute to liver damage
A sprinkle of salt can bring out the flavor of just about any dish.
Shocking new way to get the salt out
A new MIT system uses shockwaves to remove salt from water.
Nanopores could take the salt out of seawater
University of Illinois engineers have found an energy-efficient material for removing salt from seawater that could provide a rebuttal to poet Samuel Taylor Coleridge's lament, 'Water, water, every where, nor any drop to drink.'
On the road to ANG vehicles
Berkeley Lab researchers have developed metal-organic frameworks (MOFs) that feature flexible gas-adsorbing pores, giving them a high capacity for storing methane.
Frogs exposed to road salt appear to benefit then suffer
A study by Case Western Reserve University biologists suggests exposure to road salt, as it runs off into ponds and wetlands where it can concentrate -- especially during March and early April, when frogs are breeding -- may increase the size of wood frogs, but also shorten their lives.

Related Road Salt Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...