Nav: Home

DNA misspelling correction method is very accurate

April 10, 2017

Researchers at the Center for Genomic Engineering, within the Institute of Basic Science (IBS) proved the accuracy of a recently developed gene editing method. This works as DNA scissors designed to identify and substitute just one nucleotide among the 3 billion nucleotides of our genome. "It is the first time that the accuracy of this base editor has been verified at the whole genome level," explains KIM Jin-Soo, leading author of this study. Published in Nature Biotechnology, this validation will help to expand the use of this method in the sectors of agriculture, livestock, and medicine, e.g. for gene therapy.

Rapid progress in gene editing tools has caused a frenzy excitement in the biology community. The main protagonist of the current third-generation DNA scissors is CRISPR - a tool that is quicker and cheaper than its predecessors. By cutting out a small DNA sequence, CRISPR-Cas9 and CRISPR-Cpf1 are used to silence or reduce the expression of faulty genes. However, last year, a new base editor method that does not cause random DNA deletions and insertions, but instead replaces only one DNA base, attracted the biologists' attention. These types of gene corrections are critical as several diseases are caused by the misspelling of one of the four basic components of DNA; adenine (A), cytosine (C), guanine (G), and thymine (T). Single-nucleotide errors in DNA are referred to as point mutations. Examples of diseases caused by point mutations include: cystic fibrosis, sickle cell anemia, and color blindness.

Unlike the existing third-generation DNA scissors, the base editor method consists of a variation of CRISPR-Cas9 (nCas9, nickase) fused with another enzyme called cytosine deaminase, which replaces the DNA component C with T. The scissors are directed to the correct position on the DNA by a guide RNA. However, up to now, it was not known whether the base editor was working only in the area of the faulty gene or if it was unnecessarily substituting Cs in other areas (off-target).

Just one month after reporting the first successful base editing in animals in Nature Biotechnology to modify a single nucleotide in dystrophin and tyrosinase genes, the same team demonstrated the accuracy of this method at the genome scale.

In order to identify the correctness of the gene editing for the entire genome, IBS researchers modified the error-checking technique, known as Digenome-seq, in order to adapt it to the base editor method. Digenome-seq was used and validated last year, when the team analyzed the accuracy of CRISPR-Cpf1 and Cas9. IBS researchers also improved the computer program (Digenome 2.0) to identify off-targets more comprehensively and compared different guide RNAs, to find the one that reduces malfunctions and increases specificity.

Using this technique, the team demonstrated correctness of the base editor technique and they found it to be even more accurate than the current third-generation CRISPR-Cas9. The base editing technique induced C-to-T conversions in 1-67 sites in the human genome, while CRISPR-Cas9 caused cleavages in 30-241 sites, meaning that the base editor is making less off-target changes. "Therefore, it is expected that these base editors will be used as widely as the popular CRISPR technology," enthuses KIM.
-end-


Institute for Basic Science

Related Dna Articles:

A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...