Nav: Home

New technology can detect tiny ovarian tumors

April 10, 2017

CAMBRIDGE, MA -- Most ovarian cancer is diagnosed at such late stages that patients' survival rates are poor. However, if the cancer is detected earlier, five-year survival rates can be greater than 90 percent.

Now, MIT engineers have developed a far more sensitive way to reveal ovarian tumors: In tests in mice, they were able to detect tumors composed of nodules smaller than 2 millimeters in diameter. In humans, that could translate to tumor detection about five months earlier than is possible with existing blood tests, the researchers say.

The new test makes use of a "synthetic biomarker" -- a nanoparticle that interacts with tumor proteins to release fragments that can be detected in a patient's urine sample. This kind of test can generate a much clearer signal than natural biomarkers found in very small quantities in the patient's bloodstream.

"What we did in this paper is engineer our sensor to be about 15 times better than a previous version, and then compared it against a blood biomarker in a mouse model of ovarian cancer to show that we could beat it," says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science, a member of MIT's Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science, and the senior author of the study.

This approach could also be adapted to work with other cancers. In this paper, which appears in the April 10 issue of Nature Biomedical Engineering, the researchers showed they can detect colorectal tumors that metastasized to the liver.

The paper's lead authors are postdoc Ester Kwon and graduate student Jaideep Dudani.

Synthetic biomarkers

Bhatia first reported the strategy of diagnosing cancer with synthetic biomarkers in 2012. This method measures the activity of protein-cutting enzymes called endoproteases, which are made by tumors to help recruit blood vessels and invade surrounding tissues so the cancer can grow and spread.

To detect this sort of enzyme, the researchers designed nanoparticles coated with small protein fragments called peptides that can be cleaved by particular proteases called MMPs. After being injected into a mouse, these particles passively collect at the tumor site. MMPs cleave the peptides to liberate tiny reporter fragments, which are then filtered out by the kidney and concentrated in the urine, where they can be detected using various methods, including a simple paper-based test.

In a paper published in 2015, the researchers created a mathematical model of this system, to understand several factors such as how the particles circulate in the body, how efficiently they encounter the protease, and at what rate the protease cleaves the peptides. This model showed that in order to detect tumors 5 millimeters in diameter or smaller in humans, the researchers would need to improve the system's sensitivity by at least one order of magnitude.

In the current study, the researchers used two new strategies to boost the sensitivity of their detector. The first was to optimize the length of the polymer that tethers the peptides to the nanoparticle. For reasons not yet fully understood, when the tether is a particular length, specific proteases cleave peptides at a higher rate. This optimization also decreases the amount of background cleavage by a nontarget enzyme.

Second, the researchers added a targeting molecule known as a tumor-penetrating peptide to the nanoparticles, which causes them to accumulate at the tumor in greater numbers and results in boosting the number of cleaved peptides that end up secreted in the urine.

By combining these two refinements, the researchers were able to enhance the sensitivity of the sensor 15-fold, which they showed was enough to detect ovarian cancer composed of small tumors (2 millimeters in diameter) in mice. They also tested this approach in the liver, where they were able to detect tumors that originated in the colon. In humans, colon cancer often spreads to the liver and forms small tumors that are difficult to detect, similar to ovarian tumors.

Earlier diagnosis

Currently, doctors can look for blood biomarkers produced by ovarian tumors, but these markers don't accumulate in great enough concentrations to be detected until the tumors are about 1 centimeter in diameter, about eight to 10 years after they form. Another diagnostic tool, ultrasound imaging, is also limited to ovarian tumors that are 1 centimeter in diameter or larger.

Being able to detect a tumor five months earlier, which the MIT researchers believe their new technique could do, could make a significant difference for some patients.

In this paper, the researchers also showed that they could detect disease proteases in microarrays of many tumor cells taken from different cancer patients. This strategy could eventually help the researchers to determine which peptides to use for different types of cancer, and even for individual patients.

"Every patient's tumor is different, and not every tumor will be amenable to targeting with the same molecule," Bhatia says. "This is a tool that will help us to exploit the modularity of the technology and personalize formulations."

The researchers are now further investigating the possibility of using this approach on other cancers, including prostate cancer, where it could be used to distinguish more aggressive tumors from those that grow much more slowly, Bhatia says.
-end-
The research was funded by a Koch Institute Support Grant from the National Cancer Institute, a Core Center Grant from the National Institute of Environmental Health Sciences, a Ruth L. Kirschstein National Research Service Award, a National Science Foundation Graduate Research Fellowship, the Koch Institute Marble Center for Cancer Nanomedicine, and the Howard Hughes Medical Institute.

Massachusetts Institute of Technology

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...