Nav: Home

Pinpoint creation of chirality by organic catalysts

April 10, 2017

Nagoya, Japan - Researchers at Nagoya University have reported in Nature Communications, on the development of an organic catalyst (organocatalyst) that triggers a highly stereoselective 1,6-addition of azlactones (nucleophile) to a δ-aryl dienyl carbonyl compound (electrophile) to generate amino acid derivatives in high yields. The generated 1,6-adduct contains two carbon stereocenters, and a slight structural change in the organocatalyst leads to inversion of stereochemistry at a single stereocenter to form a diastereomer in high selectivity. The group started this research in 2012 and serendipitously found this inversion of stereochemistry upon screening various amino acids, which are incorporated in their unique iminophosphorane catalyst.

Many molecules with pharmaceutical uses contain stereocenters (chiral centers, where an atom has three or more different atoms or functional groups attached to it) and the development of efficient stereoselective reactions to synthesize a particular stereoisomer (isomers that differ in the three-dimensional orientations of their atoms in space) is in high demand. This is because each stereoisomer usually has different characteristics and precise control is required to obtain the desired stereoisomer in a pure form.

When connecting carbon atoms that have three different functional groups attached to them, this can result in a series of stereoisomers, where the functional groups are orientated differently in space.

Enantiomers are a type of stereoisomer, in which they contain one or more stereocenters and are mirror images of each other. So far, numerous asymmetric reactions have been developed to generate chiral centers in high efficiency. On the other hand, diastereomers are stereoisomers of a compound that have different configurations at one or more stereocenters and are not mirror images of each other.

Upon connecting a pair of carbon molecules that each has 2 different hands, they can be connected in a variety of combinations, and 4 different stereoisomers can be synthesized in theory. These stereoisomers are a series of enantiomers and diastereomers depending on the relationship to each other (mirror image or not). Conventional methods to synthesize diastereomers have required a specific catalyst for each isomer. In most cases, a completely new catalytic system is necessary to specifically obtain one of the stereoisomers.

When 2 molecules to be connected each have 4 different hands, the situation becomes more complicated and potentially leads to 16 (24) types of stereoisomers. Since the reaction can now occur at different positions, the possible generation of regioisomers (positional isomers) also arises. In order to make a specific stereoisomer (regioisomer, enantiomer, or diastereomer), a reaction system needs to be established for the starting materials to react at a specific site and in a specific orientation, i.e. for the molecules to be positioned to hold hands in a particular manner.

In a new protocol developed by Professor Takashi Ooi's group at the Institute of Transformative Bio-Molecules (ITbM) of Nagoya University, they have developed iminophosphorane catalysts that can generate specific stereoisomers in high yield and selectivity. Moreover, a slight change in the organocatalyst structure leads to pinpoint inversion of a single stereocenter to generate a diastereomer, enabling access to a particular diastereomer of interest in a pure form.

"I was really excited the moment I saw the inversion in stereochemistry by changing the organocatalyst," says Ken Yoshioka, a graduate student in Professor Ooi's research group who mainly conducted the experiments. "Initially, we were trying to expand the scope of our catalytic system to new substrates, so this was also the moment when I thought that this was more than an ordinary stereoselective reaction."

The iminophosphorane catalyst is derived from amino acids, and a change in the amino acid structure can tune the properties of the catalyst. In this case, a slight change in the position of the methyl groups on the catalyst led to the diastereomer of the 1,6-adduct.

"Since starting this research 5 years ago, it took me about 3 years to find the optimal reaction conditions after finding the stereochemical inversion reaction," continues Yoshioka. "One main issue was the reproducibility of this reaction, as the selectivities varied in each reaction. I had repeated the reaction over and over again to see what was happening."

"We were really confused by these variable results and we initially assumed that the presence of water was playing a role in the transition state and was affecting the selectivity of this reaction," says Daisuke Uraguchi, an Associate Professor at Nagoya University. Complete removal of water is difficult in organocatalysts as they are able to form hydrogen bonds with water molecules.

"After various optimization studies, we were able to find that lowering the temperature to ?30 °C was the key to controlling the selectivity of this 1,6-addition reaction," says Yoshioka. "This took a while to figure out, and were relieved to be able to generate reliable results. We were also able to stereospecifically synthesize diversely functionalized proline derivatives by further reactions of the 1,6-adducts."

"We then carried out experimental and computational studies to find a rationale for this unique stereochemical inversion," explains Uraguchi. "The organocatalysts that lead to different diastereomers share the same core and we were keen to find out how the position of the methyl groups on the catalyst affects the diastereoselectivity of this reaction."

Analysis by X-ray crystallography and DFT (density functional theory) studies revealed that the shape of the catalyst has a major role on positioning the substrates for reacting with one another. "Even though the methyl groups appear to be on the outside of the catalyst, they actually have a huge influence on holding the substrates in place to react on a particular face," describes Uraguchi. "We were able to show that a small difference in the catalyst structure changes the transition state, and leads to a change in diastereoselectivity.

Diastereodivergence (making diastereomers from a common set of substrates) has been a challenging topic, but the group succeeded in developing a new strategy for the inversion of stereochemistry by their unique reaction system. "The key to the success of this work was to keep challenging on difficult topics and to question any small observation," says Uraguchi. "Ken Yoshioka worked extremely hard on this project, and I believe that if it wasn't for him, we wouldn't have gone this far."

"I had been working on this project throughout the course of my graduate studies and I believe that my persistence paid off," says Yoshioka. "Although there were times where we were unsure of what was happening in the reaction, we checked each factor one by one and it was a great feeling of satisfaction to find the origin of the stereoselectivity."

"We were pleased to accomplish diastereodivergence in 1,6-addition reactions with high levels of stereocontrol, and envisage that this diastereodivergent strategy will advance the field of asymmetric synthesis," says Uraguchi and Takashi Ooi, a Professor at Nagoya University, who led this study. "We hope to continue to make unique catalysts that will contribute to making complex molecules, which will have potential uses in the pharmaceutical and agrochemical industries," says Ooi.
This article "Complete diastereodivergence in asymmetric 1,6-addition reactions enabled by minimal modification of a chiral catalyst" by Daisuke Uraguchi, Ken Yoshioka, Takashi Ooi is published online in Nature Communications. DOI: 10.1038/ncomms14793 (

About WPI-ITbM

The Institute of Transformative Bio-Molecules (ITbM) at Nagoya University in Japan is committed to advance the integration of synthetic chemistry, plant/animal biology and theoretical science, all of which are traditionally strong fields in the university. ITbM is one of the research centers of the Japanese MEXT (Ministry of Education, Culture, Sports, Science and Technology) program, the World Premier International Research Center Initiative (WPI). The aim of ITbM is to develop transformative bio-molecules, innovative functional molecules capable of bringing about fundamental change to biological science and technology. Research at ITbM is carried out in a "Mix Lab" style, where international young researchers from various fields work together side-by-side in the same lab, enabling interdisciplinary interaction. Through these endeavors, ITbM will create "transformative bio-molecules" that will dramatically change the way of research in chemistry, biology and other related fields to solve urgent problems, such as environmental issues, food production and medical technology that have a significant impact on the society.

Author Contact

Professor Takashi Ooi
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL: +81-52-789-4501

Media Contact

Dr. Ayako Miyazaki
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL: +81-52-789-4999 FAX: +81-52-789-3053

Nagoya University Public Relations Office
TEL: +81-52-789-2016 FAX: +81-52-788-6272

Institute of Transformative Bio-Molecules (ITbM), Nagoya University

Related Amino Acids Articles:

Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Metabolic reprogramming of branched-chain amino acid facilitates drug resistance in lung cancer
Research teams led by Dr. Ji Hongbin at the Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences, Dr.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
Characterisation of the structure of a member of the L-Amino acid Transporter (LAT) family
Mutations in L-amino acid transporters (LATs) can lead to a wide range of conditions, such as autism, hearing loss and aminoacidurias.
Model learns how individual amino acids determine protein function
A machine-learning model from MIT researchers computationally breaks down how segments of amino acid chains determine a protein's function, which could help researchers design and test new proteins for drug development or biological research.
More Amino Acids News and Amino Acids Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...