Nav: Home

Protein hampers the positive power of brown and beige fat

April 10, 2017

AUGUSTA, Ga. (April 10, 2017) - Too much of a protein already associated with prostate cancer appears to also diminish the energy burning power of brown fat, scientists report.

Their studies of the protein Id1 also show high levels reduce conversion of unhealthy white fat to a more energy burning beige. Their findings indicate the protein is a significant risk factor for diabetes and obesity and a molecular target to reverse both.

"If we can target Id1, we may able to prevent these detrimental changes and ultimately reduce the risk of obesity and related disease," said Dr. Satya Ande, molecular biologist at the Georgia Cancer Center and Medical College of Georgia at Augusta University. Ande is corresponding author of the study in the journal Diabetes.

Ande's research team is now screening compounds to find ones that suppress Id1 and ideally also actively promote energy burning and conversion of white fat to beige.

For the study, they generated a mouse that over-generated Id1 in fat cells. On a high-fat diet, these mice gained a lot more weight than their normal counterparts. They even gained more weight on a regular diet.

The scientists found that at high levels, ID1 directly binds to key regulators of brown adipose tissue, or BAT, which turns the food we eat into energy. This healthy, energy-burning fat has a lot of powerhouses, or mitochondria, and generally more blood vessels than white fat, which tends to store energy. Newborns and hibernating animals like bears tend to have higher levels of brown fat, which is why babies tend not to shiver in the cold like older children and animals tend to tolerate the cold better than humans.

They found high levels of Id1 suppresses brown fat's burning ability by binding to and suppressing the action of a key transcription factor, which is essentially a protein that can regulate gene expression up or down.

PGC1α normally controls heat production, or thermogenesis, by directly regulating a unique protein called Ucp1, which enables brown fat cell powerhouses to be more efficient and to burn energy for heat rather than making the usual cell fuel, ATP.

Ande's team also found Id1 directly suppresses Ebf2, another transcription factor found in high levels in brown fat that can help convert white fat to healthier beige. Conversely, they showed that lack of Id1 increased expression of both genes that make beige fat as well as Ucp1 in white fat in response to cold.

What activates Id1 is unclear but it's likely other transcription factors and/or signaling molecules called cytokines that are abundant in inflammation and fat, Ande said. Id1 is made by and primarily expressed by fat. While he doesn't think anyone has analyzed levels in human fat, Id1 levels go up as mice get fatter, Ande said, creating a bit of a vicious cycle.

Mice missing Id1 indicate that it's not necessary for normal function, the researchers said.

Obesity generally occurs because we eat too much and/or expend too little energy. When we don't use the fuel we consume right away, our bodies convert it to a type of fat, called triglycerides, that we can store in white fat and ideally use later when we haven't eaten enough. High triglycerides levels in your blood are a sign that the balance is off and a major risk for heart disease, diabetes and related problems.

Genetics, regular exercise and regular exposure to colder temperature can all increase levels of brown and beige fat. As we age, it's even harder for most of us to have or make brown fat, Ande said, noting that his mice with high Id1 levels were also good models for how we tend to gain weight easier as we age. "If we can target Id1, maybe that will help us increase brown fat in our body."

Obesity is also a major risk factor for liver and other cancers. The research was funded by the National Cancer Institute and the National Institute of Diabetes and Digestive and Kidney Diseases.
-end-


Medical College of Georgia at Augusta University

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".