Nav: Home

UTHealth microbiologists discover possible new strategy to fight oral thrush

April 10, 2017

HOUSTON - (April 10, 2017) - An antimicrobial protein caused a dramatic reduction in the creamy white lesions associated with oral thrush in a preclinical study, report microbiologists with McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth). Findings appeared in the Proceedings of the National Academy of Sciences.

Oral thrush is a fungal infection of the mouth and throat that affects millions worldwide. Babies, seniors and people with weakened immune systems are particularly susceptible.

"The long-term vision is to develop a new antifungal drug that takes a different approach to treating oral thrush," said Danielle Garsin, Ph.D., the study's co-principal investigator and an associate professor of microbiology and molecular genetics at McGovern Medical School.

Garsin and her collaborator, Michael Lorenz, Ph.D., tested the effectiveness of the antimicrobial protein (EntV) in a mouse model of oral thrush. "The animals who were treated with the protein had far fewer symptoms than the control animals," said Lorenz, a professor of microbiology and molecular genetics at McGovern Medical School.

Because this particular type of fungus - Candida albicans- can develop resistance to medications over time, there is always going to be a need for new antifungals, Lorenz said.

"While thrush is normally not a major problem for patients with normal immune systems, it can be particularly severe and difficult to treat in immunocompromised patients who have been exposed to multiple antifungals and can develop resistant strains of yeast," said Luis Ostrosky-Zeichner, M.D., director of the Laboratory of Mycology Research, professor of infectious diseases and vice-chair of medicine at McGovern Medical School.

"Furthermore, development of new antifungals is encouraging in the face of emerging multidrug-resistant yeasts like Candida auris," said Ostrosky, who is medical director of epidemiology for Memorial Hermann-Texas Medical Center.

Traditional antifungals stop Candida albicans from growing, but do not kill it, which leads to the rise of drug resistance. In contrast, the EntV protein appears to block the ability of Candida to cause disease but does not affect its growth. "The thought is that a treatment that just blocks virulence reduces the incentive for the microbe to evolve drug resistance. That's one of several things that is different about our strategy," Lorenz said.

Post-graduate doctoral student Carrie Graham, M.S., the study's lead author, said EntV blocks the biofilm development that allows the fungus to grow in a complex community on the tongue and walls of the mouth and increases resistance to traditional antifungal drugs.

EntV is a protein made by Enterococcus faecalis, a bacterium found in the gastrointestinal tract.

"In an earlier test where we combined Candida albicans and Enterococcus faecalis, we thought they would make each other more virulent. Instead, they actually reduced the other's virulence," Garsin said.

Lorenz said the next step in the research will be to learn more about the molecular mechanisms by which EntV inactivates Candida. "We are also testing whether EntV will work against other types of fungal infections," he said.
-end-
The study titled "Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans" was supported in part by by National Institutes of Health awards (R01AI075091, R01AI076406, R01AI110432 and F31AI1222725). McGovern Medical School senior research assistant Melissa Cruz, B.S., was a co-author.

Graham is a student at The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, where Garsin and Lorenz serve on the faculty. Ostrosky, Lorenz and Garsin are members of the Center for Antimicrobial Resistance and Microbial Genomics (CARMiG) at UTHealth.

University of Texas Health Science Center at Houston

Related Drug Resistance Articles:

Engineered viruses could fight drug resistance
MIT biological engineers can program bacteriophages to kill different strains of E. coli by making mutations in the protein that the viruses use to bind to host cells.
Origin of resistance to lung-cancer drug discovered
Researchers at Kanazawa University report in Nature Communications what causes some lung-cancer patients to have an intrinsic resistance to the drug osimertinib: AXL, a protein belonging to the class of receptor tyrosine kinases.
New drug resistance process found in bacteria
Researchers at the UAB and the UMBC have described a new process capable of generating resistance to synthetic antibacterial drugs within bacterial populations long before their invention and without the existence of any similar substance in nature.
Alzheimer's drug may help battle antibiotic resistance
Dangerous antibiotic-resistant bacteria could soon be targeted with a drug initially developed to treat Alzheimer's disease.
New drug candidates reverse drug resistance in multiple myeloma in preclinical models
A new strategy to enhance the activity of proteasome inhibitors (PIs), which are standard-of-care agents in the treatment of multiple myeloma (MM), was reported by researchers at the Medical University of South Carolina in the journal Leukemia.
More Drug Resistance News and Drug Resistance Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...