Nav: Home

Diamond-based circuits can take the heat for advanced applications

April 10, 2018

WASHINGTON, D.C., April 10, 2018 -- When power generators like windmills and solar panels transfer electricity to homes, businesses and the power grid, they lose almost 10 percent of the generated power. To address this problem, scientists are researching new diamond semiconductor circuits to make power conversion systems more efficient.

A team of researchers from Japan successfully fabricated a key circuit in power conversion systems using hydrogenated diamond (H-diamond.) Furthermore, they demonstrated that it functions at temperatures as high as 300 degrees Celsius. These circuits can be used in diamond-based electronic devices that are smaller, lighter and more efficient than silicon-based devices. The researchers report their findings this week in Applied Physics Letters, from AIP Publishing.

Silicon's material properties make it a poor choice for circuits in high-power, high-temperature and high-frequency electronic devices. "For the high-power generators, diamond is more suitable for fabricating power conversion systems with a small size and low power loss," said Jiangwei Liu, a researcher at Japan's National Institute for Materials Science and a co-author on the paper.

In the current study, researchers tested an H-diamond NOR logic circuit's stability at high temperatures. This type of circuit, used in computers, gives an output only when both inputs are zero. The circuit consisted of two metal-oxide-semiconductor field-effect transistors (MOSFETs), which are used in many electronic devices, and in digital integrated circuits, like microprocessors. In 2013, Liu and his colleagues were the first to report fabricating an E-mode H-diamond MOSFET.

When the researchers heated the circuit to 300 degrees Celsius, it functioned correctly, but failed at 400 degrees. They suspect that the higher temperature caused the MOSFETs to breakdown. Higher temperatures may be achievable however, as another group reported successful operation of a similar H-diamond MOSFET at 400 degrees Celsius. For comparison, the maximum operation temperature for silicon-based electronic devices is about 150 degrees.

In the future, the researchers plan to improve the circuit's stability at high temperatures by altering the oxide insulators and modifying the fabrication process. They hope to construct H-diamond MOSFET logic circuits that can operate above 500 degrees Celsius and at 2.0 kilovolts.

"Diamond is one of the candidate semiconductor materials for next-generation electronics, specifically for improving energy savings," said Yasuo Koide, a director at the National Institute for Materials Science and co-author on the paper. "Of course, in order to achieve industrialization, it is essential to develop inch-sized single-crystal diamond wafers and other diamond-based integrated circuits."
-end-
The article, "Annealing effects on hydrogenated diamond NOR logic circuits," is authored by Jiangwei Liu, Hirotaka Oosato, Meiyong Liao, Masataka Imura, Eiichiro Watanabe and Yasuo Koide. The article will appear in Applied Physics Letters April 10, 2018 (DOI:10.1063/1.5022590). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5022590.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

American Institute of Physics

Related Diamond Articles:

Engaging diamond for next-era transistors
Most transistors are silicon-based and silicon technology has driven the computer revolution.
Looking at light to explore superconductivity in boron-diamond films
More than a decade ago, researchers discovered that when they added boron to the carbon structure of diamond, the combination was superconductive.
Unpolarized single-photon generation with true randomness from diamond
The Tohoku University research group of Professor Keiichi Edamatsu and Postdoctoral fellow Naofumi Abe has demonstrated dynamically and statically unpolarized single-photon generation using diamond.
The world's largest diamond foil
Material researchers of Friedrich-Alexander Universität Erlangen Nürnberg have come a step closer to their goal of providing large diamond foils for practical applications.
How fullerite becomes harder than diamond
The scientists suggested that under pressure, part of the fullerite turned into diamond, while the other part remained as fullerite, but in a compressed state within the diamond.
Dr. Sakamoto explains signaling pathways in the pathogenesis of diamond blackfan anemia
The results from this research have shed light on a previously undiscovered link between the well-studied p53 pathway and the lesser known pathways associated with ribosome biogenesis and nucleotide metabolism in DBA.
New diamond harder than ring bling
The Australian National University has led an international project to make a diamond that's predicted to be harder than a jeweler's diamond and useful for cutting through ultra-solid materials on mining sites.
'Diamond-age' of power generation as nuclear batteries developed
New technology has been developed that uses nuclear waste to generate electricity in a nuclear-powered battery.
Diamond nanothread: Versatile new material could prove priceless for manufacturing
QUT's Dr Haifei Zhan is leading a global effort to work out how many ways humanity can use a newly-invented material with enormous potential -- diamond nanothread.
Defects in diamond: A unique platform for optical data storage in 3-D
There are limitations on storing large volumes of data. Home-computer hard disk drives consume a lot of power and are limited to a few terabytes per drive.

Related Diamond Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".