Diamond-based circuits can take the heat for advanced applications

April 10, 2018

WASHINGTON, D.C., April 10, 2018 -- When power generators like windmills and solar panels transfer electricity to homes, businesses and the power grid, they lose almost 10 percent of the generated power. To address this problem, scientists are researching new diamond semiconductor circuits to make power conversion systems more efficient.

A team of researchers from Japan successfully fabricated a key circuit in power conversion systems using hydrogenated diamond (H-diamond.) Furthermore, they demonstrated that it functions at temperatures as high as 300 degrees Celsius. These circuits can be used in diamond-based electronic devices that are smaller, lighter and more efficient than silicon-based devices. The researchers report their findings this week in Applied Physics Letters, from AIP Publishing.

Silicon's material properties make it a poor choice for circuits in high-power, high-temperature and high-frequency electronic devices. "For the high-power generators, diamond is more suitable for fabricating power conversion systems with a small size and low power loss," said Jiangwei Liu, a researcher at Japan's National Institute for Materials Science and a co-author on the paper.

In the current study, researchers tested an H-diamond NOR logic circuit's stability at high temperatures. This type of circuit, used in computers, gives an output only when both inputs are zero. The circuit consisted of two metal-oxide-semiconductor field-effect transistors (MOSFETs), which are used in many electronic devices, and in digital integrated circuits, like microprocessors. In 2013, Liu and his colleagues were the first to report fabricating an E-mode H-diamond MOSFET.

When the researchers heated the circuit to 300 degrees Celsius, it functioned correctly, but failed at 400 degrees. They suspect that the higher temperature caused the MOSFETs to breakdown. Higher temperatures may be achievable however, as another group reported successful operation of a similar H-diamond MOSFET at 400 degrees Celsius. For comparison, the maximum operation temperature for silicon-based electronic devices is about 150 degrees.

In the future, the researchers plan to improve the circuit's stability at high temperatures by altering the oxide insulators and modifying the fabrication process. They hope to construct H-diamond MOSFET logic circuits that can operate above 500 degrees Celsius and at 2.0 kilovolts.

"Diamond is one of the candidate semiconductor materials for next-generation electronics, specifically for improving energy savings," said Yasuo Koide, a director at the National Institute for Materials Science and co-author on the paper. "Of course, in order to achieve industrialization, it is essential to develop inch-sized single-crystal diamond wafers and other diamond-based integrated circuits."
The article, "Annealing effects on hydrogenated diamond NOR logic circuits," is authored by Jiangwei Liu, Hirotaka Oosato, Meiyong Liao, Masataka Imura, Eiichiro Watanabe and Yasuo Koide. The article will appear in Applied Physics Letters April 10, 2018 (DOI:10.1063/1.5022590). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5022590.


Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

American Institute of Physics

Related Diamond Articles from Brightsurf:

Getting single-crystal diamond ready for electronics
Researchers from Osaka University and collaborating partners polished single-crystal diamond to near-atomic smoothness without damaging it.

Turning diamond into metal
Researchers have discovered a way to tweak tiny needles of diamond in a controlled way to transform their electronic properties, dialing them from insulating, through semiconducting, all the way to highly conductive, or metallic.

Building a harder diamond
Scientists at the University of Tsukuba create a theoretical carbon-based material that would be even harder than diamond.

Quantum diamond sensing
Researchers from the University of Maryland and colleagues report a new quantum sensing technique that allows high-resolution nuclear magnetic resonance spectroscopy on small molecules in dilute solution in a 10 picoliter sample volume -- roughly equivalent to a single cell.

Shining like a diamond: A new species of diamond frog from northern Madagascar
Despite the active ongoing taxonomic progress on the Madagascar frogs, the amphibian inventory of this hyper-diverse island is still very far from being complete.

The IKBFU scientists created the first diamond x-ray micro lens
A diamond is a unique and expensive material. But it is almost indestructible which makes the lens made of it more economically profitable than metallic or polymeric ones in the long run.

Stanford research maps a faster, easier way to build diamond
With the right amount of pressure and surprisingly little heat, a substance found in fossil fuels can transform into pure diamond.

Bending diamond at the nanoscale
A team of Australian scientists has discovered diamond can be bent and deformed, at the nanoscale at least.

A tech jewel: Converting graphene into diamond film
Can two layers of the ''king of the wonder materials,'' i.e. graphene, be linked and converted to the thinnest diamond-like material, the ''king of the crystals''?

Researchers teleport information within a diamond
Researchers from the Yokohama National University have teleported quantum information securely within the confines of a diamond.

Read More: Diamond News and Diamond Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.