Berkeley engineers build smallest volume, most efficient wireless nerve stimulator

April 10, 2018

In 2016, University of California, Berkeley, engineers demonstrated the first implanted, ultrasonic neural dust sensors, bringing closer the day when a Fitbit-like device could monitor internal nerves, muscles or organs in real time. Now, Berkeley engineers have taken neural dust a step forward by building the smallest volume, most efficient wireless nerve stimulator to date.

The device, called StimDust, short for stimulating neural dust, adds more sophisticated electronics to neural dust without sacrificing the technology's tiny size or safety, greatly expanding the range of neural dust applications. The researchers' goal is to have StimDust implanted in the body through minimally invasive procedures to monitor and treat disease in a real-time, patient-specific approach. StimDust is just 6.5 cubic millimeters in volume and is powered wirelessly by ultrasound, which the device then uses to power nerve stimulation at an efficiency of 82 percent.

"StimDust is the smallest deep-tissue stimulator that we are aware of that's capable of stimulating almost all of the major therapeutic targets in the peripheral nervous system," said Rikky Muller, co-lead of the work and assistant professor of electrical engineering and computer sciences at Berkeley. "This device represents our vision of having tiny devices that can be implanted in minimally invasive ways to modulate or stimulate the peripheral nervous system, which has been shown to be efficacious in treating a number of diseases."

The research will be presented April 10 at the IEEE Custom Integrated Circuits Conference in San Diego. The research team was co-led by one of neural dust's inventors, Michel Maharbiz, a professor of electrical engineering and computer sciences at Berkeley.

The creation of neural dust at Berkeley, led by Maharbiz and Jose Carmena, a Berkeley professor of electrical engineering and computer sciences and a member of the Helen Wills Neuroscience Institute, has opened the door for wireless communication to the brain and peripheral nervous system through tiny implantable devices inside the body that are powered by ultrasound. Engineering teams around the world are now using the neural dust platform to build devices that can be charged wirelessly by ultrasound.

Maharbiz came up with the idea to use ultrasound for powering and communicating with very small implants. Together with Berkeley professors Elad Alon and Jan Rabaey, the group then developed the technical framework to demonstrate the scaling power of ultrasound for implantable devices.

Early engineering work by D.J. Seo, a Berkeley Ph.D. student who was co-advised by Alon and Maharbiz, followed by experimental validations by Ryan Neely, another Berkeley Ph.D. student, advised by Carmena, set the foundations of the neural dust vision. In the years since neural dust's invention, ultrasound has proven to be among the most promising technologies for powering and communicating implantable devices.

Muller came to Berkeley in 2016 and has been a key driver of neural dust innovation. Her research group specializes in bidirectional electronic interfaces with human body, specifically in the brain and peripheral nervous system. Her team has been working on ways to use the power that can be transmitted to neural dust. In StimDust, her lab has taken the neural dust platform and built a more effective stimulator that can wrap around a nerve cuff and can also record, transmit and receive data. They did this by designing a custom integrated circuit to transfer ultrasound charge to the nerve in a well-controlled, safe and efficient way.

StimDust is about an order of magnitude smaller than any active device with similar capabilities that the research team is aware of. The components of StimDust include a single piezocrystal, which is the antenna of the system, a 1-millimeter integrated circuit and one charge storage capacitor. StimDust has electrodes on the bottom, which make contact with a nerve through a cuff that wraps around the nerve. In addition to the device, Muller's team designed a custom wireless protocol that gives them a large range of programmability while maintaining efficiency. The entire device is powered by just 4 microwatts and has a mass of 10 milligrams.

After testing StimDust on the benchtop, the research team implanted it in a live rodent to test it in a realistic environment. Through a cuff around the sciatic nerve, the research team was able to control hind leg motion, record the stimulation activity and measure how much force was exerted on the hind leg muscle as it was stimulated. The researchers then gradually increased stimulation and mapped the response of the hind leg muscle so they could know exactly how much stimulation was needed for a desired muscle recruitment, a kind of sophisticated analysis required of medical devices.

Muller hopes that her work can lead to applications of StimDust to treat diseases such as heart irregularities, chronic pain, asthma or epilepsy.

"One of the big visions of my group is to create these very efficient bidirectional interfaces with the nervous system and couple that with intelligence to really understand the signals of disease and then to be able to treat disease in an intelligent, methodical way," Muller said. There's an incredible opportunity for healthcare applications that can really be transformative."
-end-


University of California - Berkeley

Related Ultrasound Articles from Brightsurf:

An integrated approach to ultrasound imaging in medicine and biology
Announcing a new article publication for BIO Integration journal. In this editorial, Co-Editor-in-Chief, Pingtong Huang considers an integrated approach to ultrasound imaging in medicine and biology.

PLUS takes 3D ultrasound images of solids
A two-in-one technology provides 3D images of structural defects, such as those that can develop in aircraft and power plants.

Scientists develop noninvasive ultrasound neuromodulation technique
Researchers from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences developed a noninvasive ultrasound neuromodulation technique, which could potentially modulate neuronal excitability without any harm in the brain.

World's first ultrasound biosensor created in Australia
Most implantable monitors for drug levels and biomarkers invented so far rely on high tech and expensive detectors such as CT scans or MRI.

Ultrasound can make stronger 3D-printed alloys
A study just published in Nature Communications shows high frequency sound waves can have a significant impact on the inner micro-structure of 3D printed alloys, making them more consistent and stronger than those printed conventionally.

Full noncontact laser ultrasound: First human data
Conventional ultrasonography requires contact with the patient's skin with the ultrasound probe for imaging, which causes image variability due to inconsistent probe contact pressure and orientation.

Ultrasound aligns living cells in bioprinted tissues
Researchers have developed a technique to improve the characteristics of engineered tissues by using ultrasound to align living cells during the biofabrication process.

Ultrasound for thrombosis prevention
Researchers established real-time ultrasonic monitoring of the blood's aggregate state using the in vitro blood flow model.

Ultra ultrasound to transform new tech
A new, more sensitive method to measure ultrasound may revolutionize everything from medical devices to unmanned vehicles.

Shoulder 'brightness' on ultrasound may be a sign of diabetes
A shoulder muscle that appears unusually bright on ultrasound may be a warning sign of diabetes, according to a new study.

Read More: Ultrasound News and Ultrasound Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.