Nav: Home

Scientists synthesize new nanowires to improve high-speed communication

April 10, 2019

Chinese scientists have synthesized new nanowires with high carrier mobility and fast infrared light (IR) response, which could help in high-speed communication. Their findings were published in Nature Communications on April 10th.

Nowadays, effective optical communications use 1550 nm IR, which is received and converted into an electrical signal for computer processing. Fast light-to-electrical conversion is thus essential for high-speed communications.

According to quantum theory, 1550 nm IR has energy of ~ 0.8 eV, and can only be detected by semiconductors with bandgaps lower than 0.8 eV, such as germanium (0.66 eV) and III-V compound materials such as InxGa1-xAs (0.35-1.42 eV) and InxGa1-xSb (0.17-0.73 eV). However, those materials usually have huge crystal defects, which cause substantial degradation of photoresponse performance.

Scientists from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences, City University of Hong Kong (CityU) and their collaborators synthesized highly crystalline ternary In0.28Ga0.72Sb nanowires to demonstrate high carrier mobility and fast IR response.

In this study, the In0.28Ga0.72Sb nanowires (bandgap 0.69 eV) showed a high responsivity of 6000 A/W to IR with high response and decay times of 0.038ms and 0.053ms, respectively, which are some of the best times so far. The fast IR response speed can be attributed to the minimized crystal defects, as also illustrated by a high hole mobility of up to 200 cm2/Vs, according to Prof. Johnny C. Ho from CityU.

The minimized crystal defect is achieved by a "catalyst epitaxy technology" first established by Ho's group. Briefly, the III-V compound nanowires are catalytically grown by a metal catalyst such as gold, nickel, etc.

"These catalyst nanoparticles play a key role in nanowire growth as the nanowires are synthesized layer by layer with the atoms well aligned with those in the catalyst," said HAN Ning, a professor at IPE and senior author of the paper.
-end-


Chinese Academy of Sciences Headquarters

Related Nanowires Articles:

Resistance is utile: Magnetite nanowires with sharp insulating transition
A Japanese research team led by Osaka University produced Fe3O4 nanowires on 10-nm length scales by deposition on an MgO substrate.
Giving nanowires a DNA-like twist
Argonne National Laboratory played a critical role in the discovery of a DNA-like twisted crystal structure created with a germanium sulfide nanowire, also known as a 'van der Waals material.' Researchers can tailor these nanowires in many different ways -- twist periods from two to twenty micrometers, lengths up to hundreds of micrometers, and radial dimensions from several hundred nanometers to about ten micrometers.
Shell increases versatility of nanowires
Nanowires promise to make LEDs more colorful and solar cells more efficient, in addition to speeding up computers.
Scientists synthesize new nanowires to improve high-speed communication
Scientists from the Institute of Process Engineering, City University of Hong Kong and their collaborators synthesized highly crystalline ternary In0.28Ga0.72Sb nanowires to demonstrate high carrier mobility and fast IR response.
Dose of vitamin C helps gold nanowires grow
Rice University scientists discover a method to turn stubby gold nanorods into gold nanowires of impressive length.
Silver nanowires promise more comfortable smart textiles
In a paper to be published in the forthcoming issue in NANO, researchers from the Nanjing University of Posts and Telecommunications have developed a simple, scalable and low-cost capillary-driven self-assembly method to prepare flexible and stretchable conductive fibers that have applications in wearable electronics and smart fabrics.
Artificial synapses made from nanowires
Scientists from Jülich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell.
Nanowires could make lithium ion batteries safer
From cell phones and laptops to electric vehicles, lithium-ion batteries are the power source that fuels everyday life.
Scientists have a new way to gauge the growth of nanowires
In a new study, researchers from the US Department of Energy's Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than a human hair.
Cleaning nanowires to get out more light
A simple chemical surface treatment improves the performance of nanowire ultraviolet light-emitting diodes.
More Nanowires News and Nanowires Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.