Nav: Home

MOFs can sense and sort troublesome gases

April 10, 2019

From astronauts and submariners to miners and rescue workers, people who operate in small enclosed spaces need good air quality to work safely and effectively. Electronic sensors now developed by a KAUST team can simultaneously detect at least three critical parameters that are important to monitor to ensure human comfort and safety.

These new sensors use fluorinated metal-organic frameworks (MOFs) as the sensing layer. MOFs are porous materials comprising a regular array of metal atoms held together by small organic-molecule linkers to form a repeating cage-like structure. KAUST's Mohamed Eddaoudi, who led the two studies of the sensor's efficacy, explains that by altering the metal and organic components, MOFs can be tuned for applications ranging from gas separation and storage to catalysis and sensing.

"Many people have attempted to develop simple, efficient, low-cost SO2, CO2 and H2O sensors without success," say researchers Mohamed Rachid Tchalala, Youssef Belmabkhout and Prashant Bhatt, all from Eddoudi's lab.

The approach taken by Eddaoudi's group was to develop a fluorinated MOF, which Belmabkhout and Tchalala tested as sensor materials for these gases. Testing of these state-of-the-art materials was in collaboration with Khaled Nabil Salama and his team.

The first study shows how the sensor can measure the concentration of carbon dioxide and the level of humidity in the air. While the second study of the same fluorinated MOFs shows it can detect the harmful and corrosive gas sulfur dioxide, or even selectively remove it from powerplant flue gas.

"Traces of SO2 are invariably present in the flue gas produced by factories and powerplants, and SO2 can poison materials developed to trap CO2 for carbon capture and storage," say Belmabkhout and Bhatt. "AlFFIVE-1-Ni can soak up SO2 with an affinity 66 times higher than for CO2, while showing good stability to SO2 exposure."

The MOFs could also be used with two simple, low-cost high-sensitivity sensor platforms. Quartz crystal microbalance (QCM) sensors that are coated with a thin film of either MOF detected the change in mass with the absorption of SO2, or water and CO2. Similarly, MOF-coated interdigitated electrode sensors detected a change in electronic properties with the absorption of water and CO2.

Both sensor platforms, the team showed, could monitor moisture and CO2 levels under real atmospheric conditions. "The signal is calibrated against CO2 concentration, humidity level and mixtures of both," Tchalala explains. A QCM-based sensor could also detect SO2 in the air at levels of just 25 parts per million.
-end-
The technology developed at the Advanced Membranes and Porus Materials Center is capable of detecting various gases with a high degree of selectivity and sensitivity. It was recently granted a US Patent.

King Abdullah University of Science & Technology (KAUST)

Related Carbon Capture Articles:

Graphene sheets capture cells efficiently
MIT researchers have developed a new method for capturing cells on a treated graphene oxide surface, which could lead to very low-cost diagnostic systems for a variety of diseases.
Crystallization method offers new option for carbon capture from ambient air
Scientists at the Department of Energy's Oak Ridge National Laboratory have found a simple, reliable process to capture carbon dioxide directly from ambient air, offering a new option for carbon capture and storage strategies to combat global warming.
Enabling direct carbon capture
Researchers have developed a solid material that can capture carbon dioxide from the atmosphere, even at very low concentrations.
Finding ideal materials for carbon capture
Genetic algorithm can rapidly pinpoint top candidates for pre-combustion carbon capture, information that could lead to greener designs for newly commissioned power plants.
Bacteria could detect leaks at carbon capture sites
Bacteria and archaea could be used to monitor stored carbon dioxide (CO2) and convert it into useful products, such as ethanol and acetate.
Map helps maximize carbon-capture material
A map will help natural gas producers fine-tune porous materials to sequester carbon dioxide to both help the environment and reduce costs, according to Rice University scientists.
Turtle power: How hatching together avoids capture
New research has found that green turtles hatching en masse from their nests 'swamp' predators, allowing more individuals to reach the safety of the sea.
York chemists lead breakthrough in carbon capture
Scientists from the University of York have developed an innovative new green method of capturing carbon dioxide emissions from power stations, chemical and other large scale manufacturing plants.
How chameleons capture their prey
The mucus secreted at the tip of a chameleon's tongue has a viscosity 400 times larger than the one of human saliva.
Thinning out the carbon capture viscosity problem
Researchers have used computer modeling to design carbon dioxide binding materials so that they retain a low viscosity after sponging up carbon dioxide, based on a surprise they found in their explorations.

Related Carbon Capture Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".