Nav: Home

New research reveals climate change secrets hidden in the Yukon permafrost

April 10, 2019

A study from U of T Mississauga uses new research techniques to reveal alarming information about climate change in Canada's north. A study published in Nature Communications confirms that recent climate warming in the central Yukon region has surpassed the warmest temperatures experienced in the previous 13,600 years, a finding that could have important implications in the context of current global warming trends.

Paleoclimatologist and lead author Trevor Porter studies climate indicators such as water isotopes, tree rings and plant waxes for signs of climate patterns in the Holocene, a period of time that spans the past 11,700 years. In glaciated regions, paleoclimate research often relies on water isotopes measured from ice core samples taken from glaciers, but in the central Yukon where glaciers have long since receded, researchers must rely on other indicators such as plant pollen and small winged insects known as midges preserved in layers of lake sediment. Pollen and midges act as proxies for ancient temperatures but sometimes offer conflicting information.

In a first for the field, Porter and his colleagues used radiocarbon dating and water isotopes preserved in permafrost beneath a central Yukon peatland to reconstruct summer temperatures over the last 13,600 years. Each summer, new peat moss accumulates at the surface, and the top of permafrost, which lies at a constant depth of 58 cm below ground, adjusts to the new surface. It simultaneously preserves precipitation that filtered through the ground and froze at the top of permafrost during previous summers. "Each centimeter of permafrost holds roughly 20 to 30 years of precipitation, which settles into well-blended layers of information," Porter says. "Water isotope records from ice cores are one of the most valued climate proxies but can only be developed in glaciated regions. This project demonstrates that we can develop ice core-like records in non-glaciated permafrost regions. This type of permafrost offers a unique archive for water isotopes that could be used to advance our understanding of Holocene climate change in other northern regions, which would be a major benefit to the climate science community."

The results of the permafrost analysis confirms information provided by previous midge studies, and shows that early Holocene summers in the central Yukon were mostly warmer than the typical Holocene summer. The study further concludes that industrial-era warming has led to current summer temperatures that are unprecedented in the Holocene context, and exceeds all previous maximum temperatures by nearly 2°C.

"When compared with climate reconstructions from other northern areas, our data confirm that this region has been warming at an exceptional rate," Porter says. "We know, based on recent historical climate data, that this area has warmed up more than other high-latitude regions. This

region has experienced warming of just over 2ºC over the past century, which is above the global average and above the average of the Arctic region in general."

"Summer warming has major implications for permafrost landscapes. When temperatures go up, ice-rich permafrost can thaw, become unstable, and previously frozen soil carbon can be released to the atmosphere as carbon dioxide by microbes," Porter says, noting that the region experienced a deep thaw of permafrost roughly 9,000 years ago. "Deep permafrost thaw events did occur in this region in the early Holocene, a time we now know was relatively warm compared to the Holocene average but not nearly as warm as today. This implies that ice-rich permafrost in this region is currently vulnerable to similar thaw events."

"We're seeing the evidence right now that climate warming is destabilizing permafrost in northern Canada and releasing greenhouse gases," he says "This is potentially the new normal and, if it accelerates in the near future, it threatens to further amplify global climate change."
-end-
The study was published in the April 2019 issue of Nature Communications. Research funding was provided by the Natural Sciences and Engineering Research Council of Canada.

CONTACT:

Assistant Professor Trevor Porter
Department of Geography
P: 905-828-5314
E: trevor.porter@utoronto.ca
W: utmpaleolab.wordpress.com

Blake Eligh
Staff Reporter, U of T Mississauga
905-828-3983
blake.eligh@utoronto.ca

University of Toronto

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...