Nav: Home

Ready, set, go: Scientists evaluate novel technique for firing up fusion-reaction fuel

April 10, 2019

To capture and control on Earth the fusion reactions that drive the sun and stars, researchers must first turn room-temperature gas into the hot, charged plasma that fuels the reactions. At the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), scientists have conducted an analysis that confirms the effectiveness of a novel, non-standard way for starting up plasma in future compact fusion facilities.

The innovative technique, known as "transient coaxial helical injection (CHI)," eliminates the central magnet, or solenoid, that launches the plasma inside tokamaks, the most widely used fusion facilities. Such elimination could facilitate constant, or steady state, fusion reactions and also free up valuable space in the center of compact spherical tokamaks, whose cored-apple shape has less room inside than conventional doughnut-shaped tokamaks that are more common.

Providing advantages

The freed-up space could provide advantages: It could be used to strengthen the magnetic field that confines the plasma and thereby improve its performance. Elimination of the solenoid could also simplify the design of compact tokamaks.

Fusion reactions fuse light elements in the form of plasma -- the hot, charged state of matter composed of free electrons and atomic nuclei that occurs naturally throughout the universe -- and thereby generate energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of safe and clean power to generate electricity.

Solenoids run down the center of a tokamak and induce current in the uncharged gas that researchers inject into the facility. The current strips electrons from the atoms in the gas, turning it into a charged plasma -- a process called "ionization," or plasma breakdown. The current also creates a magnetic field that combines with the field produced by magnets that surround the tokamak to bottle up and control the plasma, enabling heating heating to produce fusion reactions.

Eliminating the solenoid

By contrast, the transient CHI process reported in Physics of Plasmas produces the crucial electric current with electrodes placed near the bottom or top of the tokamak, eliminating the space-eating solenoid. "What we primarily focused on was the beginning stage of forming the plasma," said physicist Kenneth Hammond of the Max Planck Institute of Plasma Physics, the lead author of the paper who did research on CHI as a Columbia University graduate student at PPPL and is joining the laboratory this summer. "This helped paint a fuller picture of how CHI discharges work."

Transient CHI -- so-called because the electrodes that produce the plasma-launching current run briefly rather than continuously -- was first developed in experiments on the small Helicity Injection Torus (HIT-II) at the University of Washington and the larger National Spherical Torus Experiment (NSTX) at PPPL prior to its upgrade; the process also had been modeled at PPPL. The experiments, which showed that transient CHI could be scaled up from smaller to larger machines, motivated the recent study, said Roger Raman, a University of Washington physicist on long-term assignment to PPPL and a coauthor of the paper.

The study found that the placement of CHI electrodes in the earlier experiments "could exhibit a severe weakness when scaled up to a reactor," Hammond said. He then analyzed an alternative electrode configuration similar to one presently used in QUEST, a spherical tokamak in Japan. The findings showed that the alternative configuration could scale up well in a future spherical tokamak-based fusion facility designed at PPPL. "The good news from this study is that the projections for startup in large-scale devices look promising," Hammond said.

Valuable potential

The CHI technique has valuable potential, concurred Tom Brown, a principal engineer at PPPL who helped design the concept of the future spherical facility. "If successful, CHI could provide space for interior components that could enhance the performance of spherical devices," Brown said. However, he added, "further engineering details need to be developed at the experimental level that also can work within a higher-level [demonstration] device and also in an eventual fusion power plant."

Researchers have thus far tested the CHI scaling in simulations conducted on the Tokamak Simulation Code, a computer program created by PPPL physicist Stephen Jardin that has modeled plasmas around the world. Jardin, a coauthor of the Physics of Plasmas report, worked with Raman to produce the simulation referred to in the paper. "Although CHI has never been tested on a large reactor-scale device," Hammond said, "we are optimistic that the same relationships will hold on the larger size with stronger magnetic fields."

Future experiments are scheduled on URANIA, a solenoid-free spherical tokamak at the University of Wisconsin-Madison. The new experiments will test the startup of plasma with two independently operated transient CHI electrodes -- a configuration that could produce greater flexibility for optimizing the promising system.
PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Princeton Plasma Physics Laboratory

Related Magnetic Field Articles:

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at