Nav: Home

New electron microscopy technique limits membrane destruction

April 10, 2019

Membrane proteins play an important role in many biological processes. Studies suggest they're targeted by more than 50% of all modern medicinal drugs. Unfortunately for researchers, determining their structures has been a longstanding challenge because it's difficult to track the protein without damaging the cellular membrane using current techniques. Not anymore.

Researchers at Purdue University have created an electron microscopy technique termed "cryoAPEX" that accurately tracks membrane proteins in a well-preserved cell. The new method is a hybrid of two commonly used methods in cell biology: high-pressure freezing and chemical fixation.

"We took the best features from each technique and played around with conditions until we found a happy medium where you could stain for your protein while maintaining membrane preservation," said Seema Mattoo, an assistant professor of biological sciences at Purdue. "We were also able to use this information to develop a 3D image of the protein in the context of the cell."

Chemical fixation uses antibodies to detect proteins, but to do that, the cells need to be "fixed" with alcohol. Alcohol breaks down the membrane, essentially creating holes in it and allowing the signal researchers are looking for to leak out. This produces faulty results.

High-pressure freezing, on the other hand, preserves the entire cell perfectly. But this method isn't compatible with staining techniques, so there's no way to pinpoint the protein of interest.

Membrane proteins play an important role in several biological processes, including relaying signals between a cell's internal and external environments, transporting molecules and ions across the membrane, and allowing cells to identify and interact with each other. Being able to follow these proteins as they perform their duties in the cell will allow researchers to understand cell signaling mechanisms that regulate protein function.

"Virologists, for instance, will find this technique really useful because now they'll be able to follow their viruses in the context of a particular viral protein within a cell," said Mattoo, who is also a member of Purdue's Center for Cancer Research and Institute of Inflammation, Immunology and Infectious Disease.

Mattoo's research focuses on a class of enzymes called Fic proteins. The version present in humans, HYPE, is a critical regulator of whether cells under stress live or die. Her goal for developing this technique was to be able to see where HYPE goes once it enters the endoplasmic reticulum, she said.

The findings, which were published in the Journal of Cell Science, show that HYPE is strongly drawn to the lumen. This means that HYPE is tightly regulated, and if it ever does leave the endoplasmic reticulum, it would likely be under disease-specific conditions.

"As we're trying to figure out how to manipulate HYPE to determine whether it can be used as a therapeutic, we're going to focus a lot of our energy on the endoplasmic reticulum," Mattoo said. "But the wider implications of these findings are predominantly in the technique. We developed it so that it can be applied to tissue culture cells and can be used by a wide range of researchers."
-end-


Purdue University

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".