Nav: Home

Scientists from NUST MISIS create a super-fast robot microscope to search for dark matter

April 10, 2019

Researchers from the National University of science and technology MISIS (NUST MISIS, Moscow, Russia) and the National Institute for Nuclear Physics (INFN, Naples, Italy) have developed a simple and cost-effective technology that allows increasing the speed of the automated microscopes (AM) by 10-100 times. The microscopes' speed growth will help scientists in many fields: medicine, nuclear physics, astrophysics, neutrino physics, archeology, geology, volcanology, archeology. The development report was published in the Scientific Reports journal of the Nature publishing house.

"In our study, we tested the technology of fully automated optical scanning of thin samples, on which the new generation of automated microscopes will be based. We analyzed the performance and estimated the achievable scanning speed in comparison with traditional methods, - said one of the authors, a researcher from NUST MISIS and INFN Andrey Alexandrov.

Modern science requires the use of high-speed scanning systems, capable of conducting a high-precision analysis of the samples internal structure, of obtaining and analyzing large amounts of information. AM of the new generation are such systems: robots, equipped with high-precision mechanics, high-quality optics and high-speed video camera. AM works million times faster than a human microscope operator and can work 24 hours a day without getting tired.

Modern AMs are used for optical scanning of emulsion track detectors. Multi-tone detectors contain millions of emulsion films. Since the speed of AM limits the applicability of detectors, scientists are actively looking for ways to make the existing robots faster, as well as to create new, much faster generations. Such robotic microscopes will be indispensable in an experiment to search for dark matter, where it will be necessary to analyze tens of tons of nano-emulsion trackers with unprecedented accuracy in the shortest possible time.

"The machine vision technology allows AM to recognize objects in real time and independently decide whether to process their images or move to another point. Currently, the parallel computing technology CUDA and the GPU video cards are actively used to process a large (~2 GB/s from each video camera) image stream and accelerate intensive computing. We have also implemented the technology of the lens focal plane rotation", - Alexandrov added.

According to the scientist, "the efficiency and accuracy of this approach turned out to be comparable with the traditional ones, while the scanning speed is proportional to the number of cameras installed, which suggests significant progress.

Next, the scientists intend to create and test a new generation working prototype using the technology of focal plane rotation implemented by them. The 10-100 times increased speed of such microscopes can significantly increase the volume of data processed, reduce the time of their analysis without large financial expenditures, and expand the limits of applicability of the emulsion track detector method".Future scientific experiments operating with such detectors will search for dark matter particles, study neutrino physics, study ion fragmentation for the needs of hadron cancer therapy and protect interplanetary missions crews from cosmic rays", - Alexandrov said.
-end-


National University of Science and Technology MISIS

Related Dark Matter Articles:

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.
Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.
New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

TED Radio Wow-er
School's out, but many kids–and their parents–are still stuck at home. Let's keep learning together. Special guest Guy Raz joins Manoush for an hour packed with TED science lessons for everyone.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.