Discovery of a mechanism plants use to toggle on photosynthesis chosen by top journal

April 10, 2020

Harvesting sunlight to make energy is a complex reaction that plants do naturally, but isn't well understood.

A research team led by a Washington State University professor has developed a new tool to study how lipids interact with proteins in plants to help understand how photosynthesis happens.

In the paper, published in the Journal of Biological Chemistry earlier this year, the scientists used this new tool to find the lipid that controls when a photosynthetic protein switches from a light harvester to an energy dissipater in plants.

"There's a lot of potential danger with photosynthesis," said Helmut Kirchhoff, professor in WSU's Institute of Biological Chemistry. "If plants take in light energy that isn't used properly for their metabolism, it can poison the plant and kill cells. The switch of light-harvesting proteins is essential to protect the system when there's too much light available."

Until now, nobody knew for sure how plants avoided that toxicity on sunny days. It's an important scientific breakthrough.

High impact paper

The paper's impact was recently chosen by Science magazine as an editor's choice paper for March 2020.

"I was really surprised to be chosen," Kirchhoff said. "We were really excited and honored to be picked in such a top tier journal."

Kirchhoff wrote the paper with co-authors Stefanie Tietz, Ricarda Höhner, and Alice Olson from WSU and Michelle Leuenberger and Graham R Fleming from the University of California, Berkley.

How it works

In the paper, the researchers developed a method for studying how lipids, which are molecules in cell membranes that perform a variety of functions, interact with proteins in chloroplasts, the part of green plant cells that photosynthesize light.

They found that one specific type of lipid, called a nonbilayer lipid, seems to control the switch that the light harvesting protein makes when the plant has enough light and needs to dissipate some of the energy being received.

"We were suspicious that this nonbilayer lipid had a role in controlling the structure and function of membrane proteins," Kirchhoff said. "We knew it had to have a function to be there because it's the most abundant lipid in photosynthetic membranes. We just didn't know exactly what that role would be."

Future uses of findings

In a changing climate with an increasing human population, growing more food with fewer resources will be essential. This new finding could one day lead to a method for optimizing photosynthesis in crops for specific environments, so excess energy doesn't have to be wasted, Kirchhoff said.

"We're still very early on, but we're excited by what we've found in this paper," he said. "And we'll continue to use our new process to study other lipid-protein interactions to see what else we can learn."

Washington State University

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to